Abstract:
The present disclosure relates to a communication technique for fusing, with an IoT technology, a 5G communication system for supporting a higher data transmission rate than a 4G system, and a system therefor. The present disclosure may be applied to intelligent services, such as smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail businesses, and security and safety related services, on the basis of 5G communication technologies and I-T-related technologies. A method for analyzing signal transmission properties in a wireless communication system, according to one embodiment of the present specification, comprises: obtaining first information comprising three-dimensional map information; obtaining second information comprising real environment information from image information relating to the three-dimensional map information; determining locations of a plurality of transmitter candidates on the basis of at least one of the first information and the second information; and performing a ray tracing simulation on the basis of the first information and the second information. The preset research was carried out with the support of the “Cross-ministry Giga Korea Project” of the Ministry of Science, ICT and Future Planning, of the Republic of Korea.
Abstract:
The present disclosure relates to a communication technique for converging IoT technology with a 5G communication system for supporting a higher data transfer rate beyond a 4G system, and a system therefor. The present disclosure can be applied to intelligent services (e.g., smart homes, smart buildings, smart cities, smart or connected cars, health care, digital education, retail business, and services associated with security and safety) on the basis of 5G communication technology and IoT-related technology. A method for determining signal reception quality in a mobile communication system according to another embodiment of the present specification comprises the steps of: acquiring measurement information related to a received signal; acquiring map information corresponding to a region where the signal is received; and determining signal reception quality at a predicted reception point on the basis of the measurement information and the map information.
Abstract:
A signal transmission characteristic analysis method for use in a wireless communication system and an apparatus thereof are provided. The method includes locating transmission and reception positions, checking at least one object on a transmission path of a signal from the transmission position to the reception position and material of the at least one object, and determining the signal transmission characteristic based on information on the material of the at least one object. The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on 5G communication technology and IoT-related technology.
Abstract:
The disclosure relates to a communication technique and system that fuse 5th generation (5G) or pre-5G communication system with Internet of things (IoT) technology to support higher data transfer rate after 4th generation (4G) communication system, such as long term evolution (LTE). The disclosure applies to intelligent services (e.g., a smart home, a smart building, a smart city, a smart car or a connected car, healthcare, digital education, retail, security and safety related services, and the like) based on 5G communication technology and IoT related technology. A method and a device for supporting edge computing in a virtual radio access network are provided.
Abstract:
The present invention relates to a method and a device for selecting a beam in a wireless communication system which uses a plurality of antennas such as an array antenna. A method according to one embodiment of the present invention is a method for selecting a transmission beam in a transmission device of a wireless communication device comprising a transmission device having a plurality of transmission array antennas, and a receiving device having receiving array antennas in the same number as the number of transmission array antennas, and the method comprises the steps of: determining antenna pairs by measuring the transmission rate of each of the receiving array antennas of the receiving device, individually for each array antenna; determining the number of transmission array antennas and individual transmission-array-antenna modes so as to transmit data according to the service requirements of data whose transmission is required, when data transmission is required; and transmitting data through the determined transmission array antennas.
Abstract:
A method and apparatus for scaling resources of a GPU in a cloud computing system are provided. The method includes receiving requests for services from a client device, queuing the received requests in a message bus based on a preset prioritization scheme; and scaling the resources of the GPU for the requests queued in the message bus according to a preset prioritization loop.
Abstract:
Disclosed is research carried out by receiving support from the “Cross-Ministry Giga KOREA Project” funded by the government (Ministry of Science and ICT) in 2017 (No. GK17N0100, millimeter wave 5G mobile communication system development). Disclosed are: a communication technique for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of 4G system; and a system therefor. The present disclosure can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security, and safety related services, and the like) on the basis of 5G communication technology and IoT-related technology. Disclosed are an analysis method and device for improving the accuracy and the reliability of a network design result.
Abstract:
The present invention relates to techniques for a sensor network, machine-to-machine (M2M) communication, machine-type communication (MTC) and internet of things (IoT). The present invention may be applied to said technique-based intelligent services (such as smart home, smart building, smart city, smart or connected car, health care, digital education, retail business, and services associated with security and safety). A transmission apparatus of a wireless communication system according to an embodiment of the present invention comprises: a transmission unit for transmitting a compressed beacon frame by means of a plurality of transmission beams; a receiving unit for receiving information for the optimal transmission beam from among the plurality of transmission beams; and a control unit for controlling beamforming by means of a beam received from a terminal, wherein the data and header are compressed into a single frame in the compressed beacon frame.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). According to various embodiments of the present disclosure, an operating device connected to at least one base station in a wireless communication system comprises at least one transmitter-receiver and at least one processor connected to the at least one transmitter-receiver, wherein the at least one processor can determine a coverage formed by beams of the at least one base station and change a beam operation configuration for the at least one base station when the number of beams, which can be provided to a terminal, is greater than or equal to a threshold value or another terminal is positioned outside the coverage. This study was conducted with the support of the “Cross-Ministry Giga KOREA Project” by the government (Ministry of Science, Technology and Information) in 2017 (No. GK17N0100, Development of Millimeter Wave 5G Mobile Communication System).
Abstract:
The disclosure relates to a wireless communication device and a method for controlling the same and, particularly, to a wireless communication device capable of communicating in different frequency bands, and a method for controlling the same.A method according to an embodiment of the disclosure corresponds to a method for controlling a wireless communication device having a wireless communication unit in accordance with each of a plurality of wireless communication standards. The method may comprise the steps of: receiving a first control signal from a first network by a first communication processor which communicates in a first wireless standard mode; controlling, by the first communication processor, power of a second communication processor of a second wireless standard mode to be turned on when the first control signal includes system control information of the second wireless standard mode; transferring, by the first communication processor, control information to be used in a system of the second wireless standard mode to the second communication processor through a data communication interface when data received from a system of the first wireless standard mode includes the control information to be used in the system of the second wireless standard mode; and accessing and communicating with the system of the second wireless standard mode by the second communication processor.The present research has been conducted with the support of the “Cross-Department Giga KOREA Project” of the Ministry of Science, ICT and Future Planning.