Abstract:
An apparatus and method for generating a Media Access Control (MAC) Protocol Data Unit (MPDU) in a wireless communication system are provided. The method includes reconstructing at least one MAC Service Data Unit (MSDU) according to scheduling information of the MAC layer and generating at least one MAC Protocol Data Unit (MPDU) data portion, adding control information to each MPDU data portion and generating at least one MPDU payload, the control information comprising MSDU information constituting each MPDU data portion, adding a General MAC Header (GMH) to each MPDU payload and generating at least one MPDU, the GMH including length information on the MPDU and Connection IDentifier (CID) information, and transmitting the MPDU to a receive end.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system which will be provided in order to support a higher data transmission rate than a 4G communication system such as LTE. In addition, a method for transmitting and receiving signals in a terminal of a mobile communication system, according to one embodiment of the present specification, comprises the steps of: receiving, from a base station, control information including scheduling information about a plurality of subframes; transmitting data to the base station or receiving data from the base station through resources decided based on the control information; and receiving, from the base station, feedback information about the transmitted data, or transmitting, to the base station, feedback information about the received data. According to one embodiment of the present specification, there is an effect of reducing overhead of a base station, a resource and a channel according to resource allocation by performing, at one time, resource allocation for a plurality of transmission time intervals. In addition, communication efficiency is increased by performing, in one subframe, resource allocation for one or more transmission time intervals, and when feedback thereon is received, performing an operation for each of a plurality of processes.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The various embodiments of the present invention disclose a method of secured transmission and reception of discovery message in device to device (D2D) communication system. According to one embodiment, a transmitting user equipment (UE) receives a ProSe group key (PGK) from a Prose function to perform a D2D communication in a D2D public safety group. The transmitting UE then derives a ProSe traffic key (PTK) using the PGK for transmitting data packets in the D2D communication. Using the PTK, the transmitting UE further derives a Prose integrity protection key (PIK) for securing a discovery message to discover one or more receiving UEs. The transmitting UE transmits the integrity protected discovery message using the derived PIK to the receiving UE. In turn, the receiving UE transmits a response message in a secure manner by deriving a PIK using PGK configured for the receiving UE. The various embodiments of the present invention disclose a method of a terminal. According to one embodiment, the method comprises of deriving a first traffic key and a second traffic key based on a group key, deriving a first security key for securing a discovery message based on the first traffic key and a second security key for securing data packets based on the second traffic key, and transmitting the discovery message generated based on the first security key.
Abstract:
An apparatus and a method for Automatic Repeat reQuest (ARQ) feedback in a wireless communication system are provided. A method for the ARQ feedback at a receiving end includes when receiving an ARQ block from the transmitting end, checking for error in the ARQ block, when the ARQ block has no error, initializing and driving a timer used for determining whether to perform the ARQ feedback according to reception of a next ARQ block, when receiving the next ARQ block without error before the timer expires, initializing and driving the timer, and when the timer expires, performing the ARQ feedback in relation to at least one ARQ block received without error.