Abstract:
A method of automatically registering landmarks in a 3-dimensional (3D) medical image includes obtaining a 3D image; determining a set of search points based on a statistical atlas attached to a bounding box corresponding to a part of the 3D image; extracting features of the determined set of search points; forming a set of candidates for a landmark based on the extracted features; filtering the candidates and outputting remaining candidates among the candidates based on the filtering; and outputting a final position of the landmark based on one of the remaining candidates.
Abstract:
A method of automatic planning of a view in a 3D image of a brain includes A method of automatic planning a view in a three-dimensional (3D) image of a brain includes selecting a plurality of axial working sections and a plurality of coronal working sections in the 3D scout image; constructing at least one mid-sagittal plane of the brain based on a set of axial reference lines and a set of coronal reference lines obtained from the selected plurality of axial working sections and the selected plurality of coronal working sections, respectively; detecting at least one landmark that is an anatomical point in the at least one mid-sagittal plane; creating a first reference line based on the at least one landmark detected in the at least one mid-sagittal plane; and planning a scan in an orientation based on the at least one mid-sagittal plane and the first reference line.
Abstract:
Provided is medical equipment and a technique for analyzing medical images. A method for automatically planning views in three-dimensional (3D) medical images includes: estimating a statistical model indicating positions of anatomical points, the statistical model having parameters calculated by minimizing energy of a loss function; training an anatomical point detector to detect the plurality of anatomical points by using the estimated statistical model; acquiring a 3D image having a region of interest; detecting a set of candidates of the anatomical points in the 3D image; searching the set of candidates for an optimal configuration corresponding to the plurality of anatomical points; and forming a view plane based on the optimal configuration found by the searching.
Abstract:
According to an aspect of an embodiment of the disclosure, an electronic device includes: a photographing device; a memory storing one or more instructions; and at least one processor configured to execute the one or more instructions stored in the memory to capture a first image by using the photographing device, perform first adjustment on an exposure value based on the first image, when the first image does not satisfy a first condition, perform second adjustment on the exposure value based on a second image acquired by applying a mask having a high weight for a region of interest to the first image, when the second image does not satisfy a second condition, adjust at least one photographing setting value based on the adjusted exposure value, and capture, by using the photographing device, a third image based on the adjusted at least one photographing setting value.
Abstract:
Provided are a magnetic resonance (MR) image processing apparatus and a method of reconstructing a MR image. The MR image processing apparatus includes a processor and a memory connected to the processor, wherein the processor is configured to acquire a partially sampled multi-coil k-space with respect to an object and obtain a reconstructed image of the object by reconstructing the partially sampled multi-coil k-space based on a pre-acquired first dictionary and a second dictionary acquired by using the first dictionary.