Abstract:
A solid electrolyte-cathode assembly including a plurality of cathode layers spaced apart from each other in a first direction, and an electrolyte layer including an amorphous solid electrolyte and a crystalline solid electrolyte including a plurality of crystalline solid electrolyte particles, wherein the amorphous solid electrolyte is on a surface of a cathode layer of the plurality of cathode layers and the crystalline solid electrolyte is within the amorphous solid electrolyte.
Abstract:
A three dimensional (“3D”) secondary battery includes an electrolyte layer and an anode active material layer that are sequentially stacked on a plurality of first trenches that are provided in a cathode active material layer where, in the anode active material layer, a plurality of second trenches having similar shape to that of the first trenches is provided and the plurality of second trenches are filled with an elastic member and where the elastic member absorbs expansion of the anode active material layer during charging and discharging the 3D secondary battery, and thus, the degradation of the 3-dimensional secondary battery is prevented.
Abstract:
An active material structure includes first active material lines arranged in a first direction, second active material lines arranged in a second direction intersecting the first direction, and intermediate active material lines between the first active material lines and the second active material lines in a third direction intersecting the first direction and the second direction, the intermediate active material lines provided in overlapping regions of the first active material lines and the second active material lines, wherein the upper active material lines and the second active material lines are electrically connected by the intermediate active material lines.
Abstract:
An electrode structure includes a base layer including a first active material, and a plurality of active material plates on a first surface of the base layer and spaced apart from one another, the plurality of active material plates including a second active material. An active material density of the base layer is less than an active material density of an active material plate of the plurality of active material plates.
Abstract:
A metal metal-air battery includes: an anode layer including a metal, a cathode layer spaced apart from the anode layer and including a hybrid conductive material having both electron conductivity and ionic conductivity; and a separator disposed between the anode layer and the cathode layer, wherein the hybrid conductive material includes a channel for metal ion transfer from the anode layer and a channel for electron transfer between the cathode and the anode.
Abstract:
An electrode structure includes a base layer including a first active material, and a plurality of active material plates on a first surface of the base layer and spaced apart from one another, the plurality of active material plates including a second active material. An active material density of the base layer is less than an active material density of an active material plate of the plurality of active material plates.
Abstract:
A metal metal-air battery includes: an anode layer including a metal, a cathode layer spaced apart from the anode layer and including a hybrid conductive material having both electron conductivity and ionic conductivity; and a separator disposed between the anode layer and the cathode layer, wherein the hybrid conductive material includes a channel for metal ion transfer from the anode layer and a channel for electron transfer between the cathode and the anode.
Abstract:
A secondary battery includes a first electrode collector layer and a second electrode collector layer, which face each other, a plurality of first active material layers that electrically contact the first electrode collector layer and are substantially perpendicular to the first electrode collector layer, a plurality of second active material layers that electrically contact the second electrode collector layer and are substantially perpendicular to the second electrode collector layer, and a first conductor layer that electrically contacts the first electrode collector layer and is inserted into the plurality of first active material layers. 37
Abstract:
A battery includes a cathode layer, a cathode current collector on the cathode layer, an anode layer on the cathode layer, an anode current collector on the anode layer, a separator between the cathode layer and the anode layer, and an electrolyte, wherein the cathode layer includes a plurality of crystal grains of a cathode active material and aligned in a first direction, and at least one groove formed in a direction perpendicular to an upper surface of the cathode layer that is in contact with the separator, and wherein a side surface of the cathode layer exposed by the at least one groove is aligned with a crystal direction, a crystal direction, wherein h and k are integers greater than or equal to 1, or a combination thereof, of the crystal grains of the cathode active material.
Abstract:
A battery includes a cathode layer, a cathode current collector on the cathode layer, an anode layer on the cathode layer, an anode current collector on the anode layer, a separator between the cathode layer and the anode layer, and an electrolyte, wherein the cathode layer includes a plurality of crystal grains of a cathode active material and aligned in a first direction, and at least one groove formed in a direction perpendicular to an upper surface of the cathode layer that is in contact with the separator, and wherein a side surface of the cathode layer exposed by the at least one groove is aligned with a crystal direction, a crystal direction, wherein h and k are integers greater than or equal to 1, or a combination thereof, of the crystal grains of the cathode active material.