Abstract:
A method and apparatus for generating an X-ray image are provided. The method includes obtaining an X-ray image of an object, performing image analysis on a tissue of interest in an area other than an interference target region in the obtained X-ray image, and performing image processing on an entirety of the obtained X-ray image based on information on the analyzed tissue of interest and generating a final X-ray image.
Abstract:
An X-ray imaging apparatus and control method for the X-ray imaging apparatus are provided. The X-ray imaging apparatus includes an X-ray source to generate X-ray beams, and to irradiate the X-ray beams onto an object; a first X-ray detector configured to detect X-ray beams transmitted through the object and generate a first phase contrast signal; an X-ray obtainer including an X-ray collimator and a second X-ray detector, wherein the X-ray collimator is spaced apart from the object by a predetermined distance, and configured to focus the X-ray beams transmitted through the object, and wherein the second X-ray detector is configured to detect the focused X-ray beams and generate a second phase contrast signal based on the detected X-ray beams; and an image processor configured to create a phase contrast image and an absorption image of the object.
Abstract:
A medical image processing apparatus may include an image data generator to generate image data corresponding to at least two different energy bands by using an X-ray, an ROI processor to highlight a tissue of interest classified based on a predetermined characteristic to be distinguished from a normal tissue, in the generated image data, and a display to alternately display first image data in which the tissue of interest is not highlighted, and second image data in which the tissue of interest is highlighted to be distinguished from the normal tissue.
Abstract:
Disclosed herein are a display apparatus which facilitates a simultaneous comparison of a plurality of images which respectively illustrate different features on one divided display screen such that the images are seamlessly displayed on the screen, and an image display method which is performable by using the apparatus. The display apparatus includes a memory configured to store a plurality of different types of images of an object, an input device configured to receive an input of a command relating to simultaneously displaying the different types of images, and a display device configured to display images. Upon receiving the command, the display device divides a screen upon which an image of the object is displayable into a first region within which a first image showing one portion of the object is displayed and a second region within which a second image showing the remaining portion of the object is displayed.
Abstract:
A radiographic imaging control method includes combining a plurality of images by applying a first weight to the plurality of images, displaying a composite image, acquired by combining the plurality of images, newly receiving a second weight with respect to the composite image, recombining the plurality of images based on the received second weight, and displaying a recombined image, acquired by recombining the plurality of images.
Abstract:
An apparatus and method for acquiring an optimal MEX image may include an X-ray source to generate an X-ray and to irradiate the X-ray, an energy identification detector to acquire a MEX image that is generated when the irradiated X-ray penetrates an object, and an optimal MEX processor to generate an optimal MEX parameter based on a characteristic of the object and to control at least one of the X-ray source and the energy identification detector based on the generated optimal MEX parameter.
Abstract:
The X-ray imaging apparatus includes an X-ray generator to generate and emit X-rays, an X-ray detector to detect the emitted X-rays and acquire X-ray data, and a controller to convert the X-ray data into X-ray characteristic coordinates and estimate a response characteristic function of the X-ray detector from a relationship between measurement data and reference data, the measurement data and the reference data being converted into the X-ray characteristic coordinates.
Abstract:
An X-ray imaging apparatus includes an X-ray generator configured to generate X-rays and radiate the X-rays to an object; an X-ray detector configured to detect the X-rays that have passed through the object and convert the X-rays into a signal; and a controller configured to generate a single energy X-ray image and multiple energy X-ray images including a first X-ray image generated using an X-ray having determined energy band that is extracted from the X-rays detected by the X-ray detector. The multiple energy X-ray images further include a second X-ray image in which a specific substance is separated, which is image is generated using the image signals corresponding to the energy bands from the detected X-rays, respectively, and the controller is further configured to control a display to display the single energy X-ray image and the first X-ray image and the second X-ray image on a screen of the display.
Abstract:
A radiographic imaging control method includes combining a plurality of images by applying a first weight to the plurality of images, displaying a composite image, acquired by combining the plurality of images, newly receiving a second weight with respect to the composite image, recombining the plurality of images based on the received second weight, and displaying a recombined image, acquired by recombining the plurality of images.
Abstract:
An X-ray imaging apparatus and method for controlling the X-ray imaging apparatus are provided. The X-ray imaging apparatus includes an X-ray source configured to generate and emit X-rays onto an object, an X-ray detector configured to detect the X-rays transmitted through the object and convert the X-rays into an electrical signal, a heating portion located at an upper portion of the X-ray detector configured to contact a lower part of the object, a heat transfer portion configured to transfer heat produced in the X-ray source to the heating portion, and a thermal insulation member located between the X-ray detector and the heating portion configured to block heat from being transferred to the X-ray detector.