Abstract:
Provided is a magnetic resonance imaging and positron emission tomography (MRI-PET) system. The MRI-PET system includes a PET unit and a radiofrequency (RF) coil disposed within a gradient coil assembly.
Abstract:
An image correction method includes detecting signals emitted from a tracer introduced into a target; intermittently extracting some of the detected signals according to a code string in which different codes are arranged; generating an image of the target using the extracted signals; and correcting the generated image based on at least one characteristic of the generated image.
Abstract:
A method and apparatus for estimating a position distribution of radiation emission The method and apparatus include obtaining a time difference between radiations detected by a pair of detectors, and creating a probability distribution function (PDF) indicating the probability of where the radiations actually were or may have been emitted. The PDF may be created based on the time difference and timing resolutions of the pair of detectors.
Abstract:
A method and apparatus for capturing a magnetic resonance image in which processes of generating T1 contrast for different regions of an object overlap with each other, thereby obtaining a magnetic resonance image having an improved contrast between different tissues within a short time. Therefore, a time required for obtaining a magnetic resonance image may be reduced, and a magnetic resonance image enabling improved diagnosis of a disease or other abnormal condition may be provided.
Abstract:
A method of shimming a magnetic field, includes applying radio frequency (RF) signals to an object, using a transceiver coil, and calibrating phase offsets of magnetic resonance signals acquired from the object through a receiver coil. The method further includes generating RF signals to be applied through the transceiver coil based on magnetic resonance signals acquired from the object through the transceiver coil and the calibrated magnetic resonance signals.
Abstract:
Provided is a magnetic resonance imaging (MRI) apparatus. The MRI apparatus includes a magnet configured to generate a magnetic field; a magnetic field coil configured to generate a gradient magnetic field and the magnetic field coil is disposed inside the magnet; and a radio-frequency (RF) coil unit comprising RF coil elements and the RF coil unit is disposed inside the magnetic field coil.
Abstract:
Provided are a method and apparatus for obtaining a magnetic resonance imaging (MRI) image of a subject. Typically, MRI image processing that incorporates fat suppression takes a large amount of time to complete. According to various aspects, image processing that incorporates fat suppression may be postponed until MRI data is repeatedly obtained. By doing so, for example, more MRI data may be obtained during a time period of a heartbeat.
Abstract:
A magnetic resonance imaging (MRI) method includes applying a radio-frequency (RF) pulse to a subject including different tissues all including a same type of atomic nuclei to rotate magnetization directions of the atomic nuclei of the different tissues; applying an RF pulse sequence to the subject based on the magnetization directions of the atomic nuclei of the different tissues; and obtaining magnetic resonance signals from the different tissues in response to the RF pulse sequence.
Abstract:
A method of generating a response from a scanner in an imaging apparatus, a method of generating a medical image, an apparatus configured to generate a response of a scanner, and an apparatus configured to generate a medical image are provided. The method of generating a response of a scanner includes: generating point spread functions (PSFs) for the amount of the acquired signal from a point source; and generating the response of the scanner for the amount of the signal acquired, based on the PSF.
Abstract:
A motion information estimation method and an image generation apparatus are provided. The image generation apparatus may include an image data obtaining unit for obtaining image data of the anatomic features of a subject. The image generation apparatus may also include a region-of-interest (ROI) determining unit for determining a ROI in the image data, where motion is generated in the ROI corresponding to motion of the subject. The apparatus may also include a sinogram generating unit for generating first sinograms corresponding to a plurality of states of the ROI from data obtained from the subject during a first time. Additionally, the apparatus may include an extracting unit for extracting feature values of the subject from the first sinograms, respectively, and a motion information estimating unit for estimating motion information of the subject by referring to the feature values of the subject with respect to the plurality of states.