Abstract:
Provided is a magnetic resonance imaging and positron emission tomography (MRI-PET) system. The MRI-PET system includes a PET unit and a radiofrequency (RF) coil disposed within a gradient coil assembly.
Abstract:
Provided is an image generation system and method, more particularly, an image generation system and method which can generate a high dynamic range image from a plurality of images acquired in a single short exposure. The image generation system To includes an image generation system having an image acquisition unit to acquire an image, an image generation unit to generate, from the acquired image, a plurality of images with different resolution and brightness, and an image synthesis unit to synthesize the generated images.
Abstract:
An X-ray apparatus includes a controller controlling generation of an X-ray and adjusting at least one of a plurality of image frames generated based on the X-ray passed through an object, and an X-ray generator generating the X-ray. The X-ray corresponds to a pulse signal including a plurality of pulses, in which at least one of a pulse rate or a pulse amplitude is variable.
Abstract:
A method and apparatus for capturing a magnetic resonance image in which processes of generating T1 contrast for different regions of an object overlap with each other, thereby obtaining a magnetic resonance image having an improved contrast between different tissues within a short time. Therefore, a time required for obtaining a magnetic resonance image may be reduced, and a magnetic resonance image enabling improved diagnosis of a disease or other abnormal condition may be provided.
Abstract:
A method of shimming a magnetic field, includes applying radio frequency (RF) signals to an object, using a transceiver coil, and calibrating phase offsets of magnetic resonance signals acquired from the object through a receiver coil. The method further includes generating RF signals to be applied through the transceiver coil based on magnetic resonance signals acquired from the object through the transceiver coil and the calibrated magnetic resonance signals.
Abstract:
Provided are a method and apparatus for obtaining a magnetic resonance imaging (MRI) image of a subject. Typically, MRI image processing that incorporates fat suppression takes a large amount of time to complete. According to various aspects, image processing that incorporates fat suppression may be postponed until MRI data is repeatedly obtained. By doing so, for example, more MRI data may be obtained during a time period of a heartbeat.
Abstract:
A method and apparatus are provided to generate tomography images that performs the method. The apparatus and method are configured to determine a basis pattern from modulated phases of incident rays from a spatial light modulator according to a pattern of arranged pixels. The apparatus and method are further configured to perform spatial shift modulation shifting an arrangement of the pixels vertically or horizontally with respect to the basis pattern to obtain shift patterns of the basis pattern. The apparatus and method are configured to generate tomography images for the basis pattern and the shift patterns using spectrum signals of rays obtained from the incident rays passing through the spatial light modulator and entering a subject. The apparatus and method are configured to select a pattern that generates a clearest tomography image of the subject based on the generated tomography images.
Abstract:
The present invention relates to an apparatus and method of correcting a chromatic aberration of an image, and in particular, to an apparatus and method of correcting a chromatic aberration of an image that can correct a general chromatic aberration of an edge or an extreme chromatic aberration, such as a purple fringe, in an image. An apparatus for correcting a chromatic aberration of an image according to an embodiment of the present invention includes an edge detection unit detecting an edge of an input image, a level calculation unit calculating a chromatic aberration level of the detected edge, and a correction unit correcting the edge using different weighted values according to the calculated chromatic aberration level.
Abstract:
A method of generating a tomographic includes detecting a coherence signal that is phase-modulated in a first direction with respect to a cross-section of a subject and includes cross-sectional information of the subject as raw data about the subject; generating a reference temporary tomographic image and at least one temporary tomographic image by performing signal processing on the raw data; detecting an artifact are of the reference temporary tomographic image based on a result of comparing the reference temporary tomographic image with the at least one temporary tomographic image and based on artifact statistics regarding whether an artifact exists; and restoring the artifact area.
Abstract:
Provided is an image generation system and method, more particularly, an image generation system and method which can generate a high dynamic range image from a plurality of images acquired in a single short exposure. The image generation system To includes an image generation system having an image acquisition unit to acquire an image, an image generation unit to generate, from the acquired image, a plurality of images with different resolution and brightness, and an image synthesis unit to synthesize the generated images.