Abstract:
A method of determining a required blood flow includes obtaining morphological information of a coronary artery in a cardiac image, segmenting the cardiac image into at least one myocardial region based on the morphological information of the coronary artery, and determining a blood flow required for each of the at least one myocardial region.
Abstract:
A vessel segmentation method includes acquiring an image of a blood vessel, including cross sections, using a contrast medium. The method further includes setting a threshold value for each of the cross sections based on data of an intensity of the contrast medium. The method further includes performing vessel segmentation based on the image and the threshold value for each of the cross sections.
Abstract:
A method of determining a required blood flow includes obtaining morphological information of a coronary artery in a cardiac image, segmenting the cardiac image into at least one myocardial region based on the morphological information of the coronary artery, and determining a blood flow required for each of the at least one myocardial region.
Abstract:
A server according to an embodiment of the disclosure may include at least one processor and storage, wherein the at least one processor may be configured to receive beacon information including information on at least one website from the electronic device, collect data from a first website of the at least one website based on the beacon information, generate content having a structured document format based on at least a part of the collected data, and transmit the generated content to the electronic device.
Abstract:
A particle-based modeling method and apparatus may include searching for a second particle neighboring a first particle in a vector field at a current time, and updating a position of each of the first particle and the second particle in each vector field over time, based on correcting a velocity of each of the first particle and the second particle based on a variation satisfying an incompressible constraint condition for each of the first particle and the second particle.
Abstract:
A method and an apparatus for diagnosing cardiac diseases based on a cardiac motion modeling are provided. The method may include applying physical characteristics of a cardiac motion to a 3D heart shape model, deriving a boundary condition by fusing the 3D heart shape model to which the physical characteristics are applied and a plurality of cardiac ultrasound images according to a temporal change, obtained to acquire a dynamic image, and diagnosing the cardiac diseases using a result of modeling that models the cardiac motion of the user using the boundary condition.
Abstract:
A particle-based modeling method and apparatus may include searching for a second particle neighboring a first particle in a vector field at a current time, and updating a position of each of the first particle and the second particle in each vector field over time, based on correcting a velocity of each of the first particle and the second particle based on a variation satisfying an incompressible constraint condition for each of the first particle and the second particle.
Abstract:
A method and an apparatus for diagnosing cardiac diseases based on a cardiac motion modeling are provided. The method may include applying physical characteristics of a cardiac motion to a 3D heart shape model, deriving a boundary condition by fusing the 3D heart shape model to which the physical characteristics are applied and a plurality of cardiac ultrasound images according to a temporal change, obtained to acquire a dynamic image, and diagnosing the cardiac diseases using a result of modeling that models the cardiac motion of the user using the boundary condition.
Abstract:
A method of creating a model of an organ, includes creating a shape model, including a blood vessel structure, of the organ based on three-dimensional (3D) images of the organ, and compartmentalizing the shape model into areas based on an influence of a blood vessel tree with respect to a deformation of the shape model, the blood vessel tree indicating the blood vessel structure. The method further includes deforming the blood vessel structure of the shape model to fit a blood vessel structure of a two-dimensional (2D) image of the organ, and creating the model of the organ based on the deformed blood vessel structure and the areas.