Abstract:
An electronic device according to an embodiment may include a first sensor, a communication circuit, a processor operatively coupled to the first sensor and the communication circuit, and a memory operatively coupled to the processor. The memory may store instructions that, when executed by the processor, cause the processor to: determine whether calibration is required for a second sensor of a stylus pen, based on a specified condition; identify that the stylus pen is aligned to a specified position of the electronic device; in response to identifying that the stylus pen is aligned to the specified position of the electronic device and determining that the calibration is required, collect situation information by using the first sensor; and transmit a calibration command to the stylus pen through the communication circuit, based on the situation information.
Abstract:
An electronic device and method are disclosed herein. The electronic device includes a housing, a display exposed through a portion of the housing, a wireless communication circuit disposed in the housing, a processor disposed in the housing and operatively connected with the display and the wireless communication circuit, and a memory. The processor implements the method, including detecting an approach of a stylus pen in a lock state such that the stylus pen is disposed within a predetermined distance from a surface of the display, and changing the electronic device from the lock state to an unlock state based on at least in part on receiving, through the wireless communication circuit, a wireless signal generated by the stylus pen based on the approach of the stylus pen.
Abstract:
An electronic device is provided and includes a housing having a first external surface; a first imaging device exposed through a first portion of the first external surface and comprising a first field of view (FOV); a second imaging device exposed through a second portion adjacent to the first portion and comprising a second FOV narrower than the first FOV; a communication circuit; at least one processor operatively connected to the first imaging device, the second imaging device, and the communication circuit; and a memory operatively connected to the processor and configured to store instructions executed through the processor that cause the processor to generate a first image including a first object and a second object from a first time point through the first imaging device, generate a second image including the first object simultaneously with the generation of the first image from the first time point through the second imaging device, transmit the first image and the second image to an external server through the communication circuit, receive object recognition information of the first object and the second object, detect motion of the electronic device, generate a third image including the second object from a second time point different from the first time point through the second imaging device, extract an object image from the third image, based at least partially on the information or the detected motion, the object image being smaller than the third image, and transmit the object image and the object recognition information to the external server through the communication circuit.
Abstract:
A mobile communication device is provided. The mobile communication includes a first touch display forming a portion of a first surface of the mobile communication device, a second touch display forming a portion of a second surface of the mobile communication device, and a processor configured to display in the first touch display a first screen corresponding to an application executed in a first folding state while a state of the device is the first folding state, identify the state of the mobile communication device changing to a second folding state, and display in the second touch display, based on the identification, a second screen corresponding to the application and an image partially overlapping the second screen, a touch input on the second touch display while the second screen and the image are displayed in the second touch display as overlapping is configured to not be processed as an input.
Abstract:
An electronic device is provided. The electronic device includes a hinge structure, a first housing, a second housing, a first display, a second display, and a processor. The processor may be set to control the first display to display a first screen of a first application while in a folded state, the first screen corresponding to the first display, control the second display to display a transition screen when unfolding is detected, and control the second display to display a second screen in replacement of the transition screen upon the completion of at least one operation set to be performed in order to display the second screen, corresponding to the second display, of the first application.
Abstract:
An electronic device is provided and includes a housing having a first external surface; a first imaging device exposed through a first portion of the first external surface and comprising a first field of view (FOV); a second imaging device exposed through a second portion adjacent to the first portion and comprising a second FOV narrower than the first FOV; a communication circuit; at least one processor operatively connected to the first imaging device, the second imaging device, and the communication circuit; and a memory operatively connected to the processor and configured to store instructions executed through the processor that cause the processor to generate a first image including a first object and a second object from a first time point through the first imaging device, generate a second image including the first object simultaneously with the generation of the first image from the first time point through the second imaging device, transmit the first image and the second image to an external server through the communication circuit, receive object recognition information of the first object and the second object, detect motion of the electronic device, generate a third image including the second object from a second time point different from the first time point through the second imaging device, extract an object image from the third image, based at least partially on the information or the detected motion, the object image being smaller than the third image, and transmit the object image and the object recognition information to the external server through the communication circuit.
Abstract:
An electronic device and a method for processing a hovering input are provided. The method includes displaying a screen; when a hovering input is sensed, detecting a location of the sensed hovering input; analyzing a priority of the hovering input; and determining a position of a hovering pointer from the location of the hovering input having the highest priority. The electronic device includes a touch screen configured to display thereon a screen and to touch sense a hovering input; and a control unit configured, when the hovering input is sensed from the screen, to detect a location of the sensed hovering input, to analyze a priority of the hovering input, and to determine a position of a hovering pointer from the location of the hovering input having a highest priority.
Abstract:
A mobile communication device is provided. The mobile communication includes a first touch display forming a portion of a first surface of the mobile communication device, a second touch display forming a portion of a second surface of the mobile communication device, and a processor configured to display in the first touch display a first screen corresponding to an application executed in a first folding state while a state of the device is the first folding state, identify the state of the mobile communication device changing to a second folding state, and display in the second touch display, based on the identification, a second screen corresponding to the application and an image partially overlapping the second screen, a touch input on the second touch display while the second screen and the image are displayed in the second touch display as overlapping is configured to not be processed as an input.
Abstract:
Disclosed is a foldable electronic device comprising: a foldable housing which includes a first housing and a second housing; a first display which is disposed at a first surface of the foldable housing, can be folded according to folding operations of the first housing and the second housing, and includes an exposure region exposed to the outside in a folded state; a second display which is disposed in at least a portion of a second surface of the first housing, positioned opposite to the first surface; a sensor which senses a folding angle of the foldable housing; and a processor which is operatively connected to the first display, the second display, and the sensor.
Abstract:
An electronic device according to various embodiments may include: a housing including a first housing, a second housing, and a third housing; a first hinge configured to enable the first housing and the third housing to pivot, and a second portion configured to enable the second housing and the third housing to pivot; a first display viewable through a first area of the first housing, a second area of the second housing, and a third area of the third housing; at least one sensor; a processor operably connected to the first display and the at least one sensor; and a memory operably connected to the processor, wherein the memory may store instructions that, when executed, cause the processor to control the electronic device to: display a first screen of an application in a first state in which the first area and the second area face the third area, detect, through the at least one sensor, a change from the first state to a second state in which the first area and the third area face a same direction or a third state in which the second area and the third area face a same direction, determine a second screen of the application to be displayed through the first display in a state, among the second state and the third state, changed from the first state, and display the second screen through the first display in the changed state.