Abstract:
A storage device includes a memory device including a metadata area and a journal data area. A memory controller is configured to control the memory device to write a metadata block to the metadata area and to write a journal data block to the journal data area. The metadata block includes metadata, and the journal data block includes both journal data and metadata storage information. The journal data includes log information pertaining to the metadata, and the metadata storage information includes information pertaining to storage of the metadata block.
Abstract:
A storage device includes a memory device including a metadata area and a journal data area. A memory controller is configured to control the memory device to write a metadata block to the metadata area and to write a journal data block to the journal data area. The metadata block includes metadata, and the journal data block includes both journal data and metadata storage information. The journal data includes log information pertaining to the metadata, and the metadata storage information includes information pertaining to storage of the metadata block.
Abstract:
A method of writing data in a storage device including sequentially receiving a plurality of data write commands, sequentially assigning a plurality of write data corresponding to the plurality of data write commands to a plurality of buffer groups by determining continuity of logical addresses of the plurality of write data such that each of the plurality of buffer groups temporarily stores some of the plurality of write data included in a respective single stream and having consecutive logical addresses, assigning a plurality of serial numbers to the plurality of write data, respectively, based on an order in which the plurality of write data are assigned to the plurality of buffer groups, programming the plurality of write data temporarily stored in the plurality of buffer groups into a plurality of memory blocks, and updating a logical-to-physical mapping table based on the plurality of serial numbers may be provided.
Abstract:
A storage device includes at least one nonvolatile memory device including a plurality of memory blocks, the nonvolatile memory device configured to store user data and meta data in the plurality of memory blocks, and a device controller configured to control the nonvolatile memory device, to calculate a user cost corresponding to a time of memory accesses to the user data to be performed at garbage collection with respect to each of the plurality of memory blocks, to calculate a meta cost corresponding to a time of memory accesses to the meta data to be performed at the garbage collection with respect to each of the plurality of memory blocks, to select a victim block among the plurality of memory blocks based on the user cost and the meta cost, and to perform the garbage collection on the victim block.
Abstract:
A memory device and a dynamic garbage collection method thereof are provided. The method includes receiving a minimum operating speed, ascertaining a reference valid page count ratio (VPC), using a maximum operating speed, the minimum operating speed, and a garbage collection speed, the reference VPC ratio being ascertained by the following formula 1 and determining whether to perform a garbage collection, using the reference VPC ratio and a current average VPC ratio. Vr=Gp (Jp−Mp)/(Jp*Mp+(Gp*(Jp−Mp))) Here, Vr is the reference VPC ratio, Gp is the garbage collection speed, Jp is the maximum operating speed, and Mp is the minimum operating speed.
Abstract:
According to one embodiment, a method for operating a mobile terminal using a dialog application displaying specified content on a specific region of a dialog window. The dialog window is scrolled as dialog content increases. The specified content is fixedly displayed when the dialog content displayed on the dialog window is scrolled.