Abstract:
A security device generates a key based on a physically unclonable function (PUF). The security device includes a physically unclonable function (PUF) block, an integrity detector, and a post processor. The PUF block outputs a plurality of first random signals and a plurality of corresponding first inverted random signals each having a logic level opposite to that of each of the plurality of corresponding first random signals. The integrity detector determines data integrity of the plurality of first random signals by using the plurality of first random signals and the plurality of corresponding first inverted random signals. The post processor generates a first row key that includes validity signals satisfying the data integrity.
Abstract:
A security device and an operating method thereof, which generate masking data for masking a key on the basis of a physically unclonable function (PUF), are provided. The security device includes a PUF circuit including a plurality of PUF cells outputting random key data and masking data, a key generator configured to generate a key through post-processing performed on the random key data, and a masking module configured to mask and store the key by using the masking data, wherein the random key data and the masking data are generated by different PUF cells.
Abstract:
A security device generates a key based on a physically unclonable function (PUF). The security device includes a physically unclonable function (PUF) block, an integrity detector, and a post processor. The PUF block outputs a plurality of first random signals and a plurality of corresponding first inverted random signals each having a logic level opposite to that of each of the plurality of corresponding first random signals. The integrity detector determines data integrity of the plurality of first random signals by using the plurality of first random signals and the plurality of corresponding first inverted random signals. The post processor generates a first row key that includes validity signals satisfying the data integrity.
Abstract:
A modular arithmetic unit includes a first input generator receiving first data to generate a first operand; a second input generator receiving second data to generate a second operand; an accumulator performing an accumulate/shift operation to add the first and second operands and outputting the carry and sum; a carry propagation adder adding the carry and the sum to output a result; and a data handler receiving either external data or the result and outputting the first data and the second data.
Abstract:
An authentication apparatus, included in a device supporting a network communication, includes a certificate handler that receives a certificate of an opponent and parses or verifies the certificate of the opponent. Cryptographic primitives receive an authentication request of the opponent, generate a random number in response to the authentication request, generate a challenge corresponding to the random number, and verify a response of the opponent corresponding to the challenge. A shared memory stores the parsed certificate, the random number, the challenge, and the response. An authentication controller controls the certificate handler, the cryptographic primitives, and the shared memory through a register setting, according to an authentication protocol.
Abstract:
A Montgomery multiplier includes a partial product computing unit for multiplying a multiplicand and a multiplier; a modulus reduction computing unit for performing a multiplication of a modulus and a quotient that reflects a quotient sign; an accumulation unit for accumulating in a intermediate value an output value of the partial product computing unit and an output value of the modulus reduction computing unit from a previous cycle; a quotient computing unit for receiving an accumulation value of the accumulation unit during a current cycle and calculating a quotient sign to be used during a next cycle; and a quotient sign determination unit for determining a quotient sign to be used during a next cycle from the multiplicand, the multiplier and the quotient.
Abstract:
A security device and an operating method thereof, which generate masking data for masking a key on the basis of a physically unclonable function (PUF), are provided. The security device includes a PUF circuit including a plurality of PUF cells outputting random key data and masking data, a key generator configured to generate a key through post-processing performed on the random key data, and a masking module configured to mask and store the key by using the masking data, wherein the random key data and the masking data are generated by different PUF cells.
Abstract:
A semiconductor device includes a physical unclonable function (PUF) cell array that includes PUF cells outputting first bits; a non-volatile memory that stores marking bits indicating whether the first bits are valid, first mask bits generated by masking second bits depending on parity of the second bits, and second mask bits generated by masking helper bits of the second bits, the second bits are valid bits from the first bits; an extracting unit that extracts the second bits from the first bits using the marking bits; an unmasking unit that unmasks the second bits using the first mask bits while receiving the second bits to provide the third bits; a bit decoding unit that compresses the third bits to fourth bits while receiving the third bits; and a block decoding unit that generates a security key by decoding the fourth bits and the second mask bits.