Abstract:
Disclosed is a complementary metal oxide semiconductor (CMOS) image sensor. The image sensor comprises a first separation zone in a substrate, the first separation zone defining first and second pixel regions arranged in a first direction, the first separation zone including first parts substantially parallel extending in the first direction, and the substrate including a first active region vertically overlapping one of the first parts and a second active region vertically overlapping another of the first parts. The image sensor further comprises first and second photoelectric conversion devices arranged in the first direction on at least one of the first and second pixel regions in the substrate, and a source follower gate on the first active region of the substrate.
Abstract:
An electronic device is provided. The electronic device comprises an interposer disposed between first circuit board and second circuit board, and including an opening area and for accommodating the at least one electronic component, and the interposer comprises a board including an inner surface that faces the opening area and an outer surface that faces an opposite direction to the inner surface, wherein the outer surface is formed in a convexo-concave form having a plurality of first concave areas and a plurality of first concave areas, and a side conductive member disposed on the first concave areas and the first concave areas of the outer surface, and formed along the convexo-concave form of the outer surface.
Abstract:
An image sensor includes a substrate having first and second surfaces, pixel regions arranged in a direction parallel to the first surface, first and second photodiodes isolated from each other in each of the pixel regions, a first device isolation film between the pixel regions, a pair of second device isolation films between the first and second photodiodes and extending from the first device isolation film, a doped layer adjacent to the pair of second device isolation films and extending from the second surface to a predetermined depth and spaced apart from the first surface, the doped layer being isolated from the first device isolation film, and a barrier area between the pair of second device isolation films and having a potential greater than a potential of a portion of the substrate adjacent to the barrier area.
Abstract:
Disclosed is an image sensor comprising a subtrate that includes a plurality of pixel groups each including a plurality of pixel regions, a plurality of color filters two-dimensionally arraned on a first surface of the substrate, and a pixel separation structure in the substrate. The pixel separation structure includes a first part that defines each of the pixel regions and a second part connected to the first part. The second part runs across an inside of each of the pixel regions.
Abstract:
Disclosed is a complementary metal oxide semiconductor (CMOS) image sensor. The image sensor comprises a first separation zone in a substrate, the first separation zone defining first and second pixel regions arranged in a first direction, the first separation zone including first parts substantially parallel extending in the first direction, and the substrate including a first active region vertically overlapping one of the first parts and a second active region vertically overlapping another of the first parts. The image sensor further comprises first and second photoelectric conversion devices arranged in the first direction on at least one of the first and second pixel regions in the substrate, and a source follower gate on the first active region of the substrate.
Abstract:
An image sensor includes a first conductivity type first impurity region surrounded by a pixel isolation layer surrounds; a first conversion device isolation layer intersecting the first impurity region in a first direction; a second conductivity type second impurity region disposed on a first side surface of the first conversion device isolation layer; a second conductivity type third impurity region disposed on a second side surface of the first conversion device isolation layer opposite the first side surface; and a second conversion device isolation layer intersecting the first impurity region in a second direction perpendicular to the first direction. The second impurity region and the third impurity region are disposed inside the first impurity region.
Abstract:
An image sensor includes a pixel array and a logic circuit. The pixel array includes a pixel isolation layer between a plurality of pixels. Each of the plurality of pixels include a pixel circuit below at least one photodiode. The logic circuit acquires a pixel signal from the plurality of pixels. The pixel array includes at least one autofocusing pixel, which includes a first photodiode, a second photodiode, a pixel internal isolation layer between the first and second photodiodes, and a microlens on the first and second photodiodes. The pixel internal isolation layer includes a first pixel internal isolation layer and a second pixel internal isolation layer, separated from each other in a first direction, perpendicular to the upper surface of the substrate, and the first pixel internal isolation layer and the second pixel internal isolation layer include different materials.
Abstract:
An image sensor and an operating method of the image sensor may include a pixel array including a plurality of pixels; a controller configured to generate a pre-shutter driving signal associated with a pre-shutter operation, the pre-shutter driving signal generated before a first shutter operation and a first read operation corresponding to photographing a first frame is performed; a row driver configured to drive first control signals to the pixel array based on the pre-shutter driving signal, the first control signals associated with the pre-shutter operation; and the pixel array is configured to perform the pre-shutter operation in response to the first control signals, wherein levels of the first control signals correspond to levels of second control signals, the second control signals associated with the first read operation.
Abstract:
Provided is an image sensor including a first pixel including a first floating diffusion region and a second floating diffusion region, a second pixel including a first floating diffusion region, a second floating diffusion region, and a third floating diffusion region, a third pixel including a first floating diffusion region and a second floating diffusion region, and a fourth pixel including a first floating diffusion region, a second floating diffusion region, and a third floating diffusion region, wherein the second floating diffusion region of the first pixel and the second floating diffusion region of the second pixel are connected through a first metal line, and wherein the third floating diffusion region of the second pixel and the third floating diffusion region of the third pixel are connected through a second metal.
Abstract:
Disclosed is a complementary metal oxide semiconductor (CMOS) image sensor. The image sensor comprises a first separation zone in a substrate, the first separation zone defining first and second pixel regions arranged in a first direction, the first separation zone including first parts substantially parallel extending in the first direction, and the substrate including a first active region vertically overlapping one of the first parts and a second active region vertically overlapping another of the first parts. The image sensor further comprises first and second photoelectric conversion devices arranged in the first direction on at least one of the first and second pixel regions in the substrate, and a source follower gate on the first active region of the substrate.