Abstract:
An image sensor includes a pixel array including a first shared pixel and a second shared pixel that are adjacent to each other in a row direction. The first shared pixel includes two or more photo diodes in a first row and two or more photo diodes in a second row, and the first shared pixel includes a first floating diffusion region shared by the photo diodes of the first shared pixel. The second shared pixel includes two or more photo diodes in the first row and two or more photo diodes in the second row, and the second shared pixel includes a second floating diffusion region shared by the photo diodes of the second shared pixel.
Abstract:
An image sensor includes a pixel array including a first shared pixel and a second shared pixel that are adjacent to each other in a row direction. The first shared pixel includes two or more photo diodes in a first row and two or more photo diodes in a second row, and the first shared pixel includes a first floating diffusion region shared by the photo diodes of the first shared pixel. The second shared pixel includes two or more photo diodes in the first row and two or more photo diodes in the second row, and the second shared pixel includes a second floating diffusion region shared by the photo diodes of the second shared pixel.
Abstract:
An optical biosensor is provided. The optical biosensor includes a biosensing unit, a detection unit, and a feedback circuit. The biosensing unit is configured to receive an input optical signal, sense a biomaterial, and generate a sensed optical signal. The detecting unit is configured to convert the sensed optical signal into an electrical signal and output the electrical signal as a detection signal. The feedback circuit is configured to output a feedback signal. The feedback signal is generated based on the detection signal and is changed according to a changed amount of a resonant wavelength of the biosensing unit.
Abstract:
An image sensor includes a pixel array including a first shared pixel and a second shared pixel that are adjacent to each other in a row direction. The first shared pixel includes two or more photo diodes in a first row and two or more photo diodes in a second row, and the first shared pixel includes a first floating diffusion region shared by the photo diodes of the first shared pixel. The second shared pixel includes two or more photo diodes in the first row and two or more photo diodes in the second row, and the second shared pixel includes a second floating diffusion region shared by the photo diodes of the second shared pixel.
Abstract:
An image sensor includes a pixel array including a first shared pixel and a second shared pixel that are adjacent to each other in a row direction. The first shared pixel includes two or more photo diodes in a first row and two or more photo diodes in a second row, and the first shared pixel includes a first floating diffusion region shared by the photo diodes of the first shared pixel. The second shared pixel includes two or more photo diodes in the first row and two or more photo diodes in the second row, and the second shared pixel includes a second floating diffusion region shared by the photo diodes of the second shared pixel.
Abstract:
An optical biosensor is provided. The optical biosensor includes a biosensing unit, a detection unit, and a feedback circuit. The biosensing unit is configured to receive an input optical signal, sense a biomaterial, and generate a sensed optical signal. The detecting unit is configured to convert the sensed optical signal into an electrical signal and output the electrical signal as a detection signal. The feedback circuit is configured to output a feedback signal. The feedback signal is generated based on the detection signal and is changed according to a changed amount of a resonant wavelength of the biosensing unit.
Abstract:
An image sensor includes a pixel array including a first shared pixel and a second shared pixel that are adjacent to each other in a row direction. The first shared pixel includes two or more photo diodes in a first row and two or more photo diodes in a second row, and the first shared pixel includes a first floating diffusion region shared by the photo diodes of the first shared pixel. The second shared pixel includes two or more photo diodes in the first row and two or more photo diodes in the second row, and the second shared pixel includes a second floating diffusion region shared by the photo diodes of the second shared pixel.
Abstract:
Provided is an image sensor including a pixel array which provides a plurality of pixels arranged in rows and columns. The plurality of pixels include: a plurality of image sensing pixels each including a plurality of image sensing sub pixels that include the same color filter; and a plurality of phase detection pixels each including at least one phase detection sub pixel which generates a phase signal for calculating a phase difference between images, wherein the plurality of image sensing sub pixels included in the same image sensing pixel are connected to one selection signal line and receive the same selection signal.
Abstract:
Provided is an image sensor including a pixel array which provides a plurality of pixels arranged in rows and columns. The plurality of pixels include: a plurality of image sensing pixels each including a plurality of image sensing sub pixels that include the same color filter; and a plurality of phase detection pixels each including at least one phase detection sub pixel which generates a phase signal for calculating a phase difference between images, wherein the plurality of image sensing sub pixels included in the same image sensing pixel are connected to one selection signal line and receive the same selection signal.
Abstract:
An optical biosensor may include a biosensing unit, detection unit, and signal processing unit. The biosensing unit may be configured for receiving first and second optical signals (which are generated from a phase-modulated optical signal), outputting a sensing signal by transmitting the first optical signal via a first optical path that includes a sensing resonator, and outputting a reference signal by transmitting the second optical signal via a second optical path that includes a reference resonator. The detection unit may be configured for receiving the sensing signal and the reference signal, detecting a phase element of each of the sensing signal and the reference signal through a signal demodulation operation, and detecting a phase difference between the sensing signal and the reference signal according to the detected phase elements. The signal processing unit may be configured for calculating the concentration of a bio-material based on the detected phase difference.