Abstract:
An organic photoelectric film on a substrate may perform photoelectric conversion of incident light. Pixel electrodes are arranged in a matrix form in an X-axis direction and a Y-axis direction between the substrate and the organic photoelectric film. A driving circuit may read pixel information from each pixel electrode of a pixel electrode line including a plurality of pixel electrodes arranged in the X-axis direction, and applies an on-voltage or an off-voltage to each pixel electrode 40 of the pixel electrode line. The driving circuit may scan a photoelectric conversion ON region to which the on-voltage is applied in the −Y-axis direction in synchronization with a timing of scanning a read line to which the pixel information is read in the −Y-axis direction.
Abstract:
In a signal processing apparatus, a photoelectric conversion member includes a first photoelectric conversion layer configured to photoelectrically convert at least one of blue light or red light, and a second photoelectric conversion layer on an incident light surface of the first photoelectric conversion layer and configured to photoelectrically convert green light. An interpolation circuit is configured to interpolate at least one of a blue light signal or a red light signal obtained by photoelectric conversion in the first photoelectric conversion layer L1, using a green light signal obtained by photoelectric conversion in the second photoelectric conversion layer L2. An absorption correction circuit is configured to perform absorption correction on the green light signal, using at least one of the blue light signal or the red light signal that are interpolated by the interpolation circuit.
Abstract:
A 3D information calculation apparatus includes processing circuitry that may receive first and second images of different first and second wavelength bands, respectively, at a same time and angle of view based on a subject being imaged while structured light of the first wavelength band is projected on to subject, receive third and fourth images of the first and second wavelength bands, respectively, at a same time and angle of view based on the subject being imaged while the structured light is not projected on the subject, calculate a first difference image of the first wavelength band based on subtracting the first and third images, calculate a second difference image of the second wavelength band based on subtracting the second and fourth images, calculate an extraction image based on subtracting the first and second difference images, and calculate a distance to the subject based on the extraction image.
Abstract:
Disclosed is a high frequency amplifier which can properly compensate for distortion generated in a power amplifier even when an observation band of a feedback signal is made narrow. The high frequency amplifier includes a data correction unit that corrects transmission data through a digital pre-distortion method, and the data correction unit includes an orthogonalizer that orthogonalizes and outputs respective order components of a polynomial model for the digital pre-distortion method, and a compensator that compensates for a memory effect of the power amplifier for an output of the orthogonalizer.