Abstract:
According to various embodiments of the disclosure, an electronic device includes a first speaker, a second speaker, at least one sensor that detects a state of at least one of the first speaker and the second speaker and at least one processor electrically connected to the first speaker, the second speaker and the at least one sensor, wherein the at least one processor outputs an audio signal through the first speaker and the second speaker, identifies states of the first speaker and the second speaker by using the at least one sensor, and decreases a volume level of an audio signal output by the first speaker and increases a volume level of an audio signal output by the second speaker when it is determined that the state of the first speaker is an abnormal state. In addition, various embodiments understood from the specification are possible.
Abstract:
Various embodiments of the present disclosure relate to an apparatus and a method for detecting an error of an audio component in an electronic device. The electronic device includes: at least one sound output device; at least one microphone; and a processor, and the processor is configured to identify a deviation related to a loudness of an audio signal acquired through the at least one microphone, and to determine whether an error related to the at least one microphone occurs, based at least on the deviation. Other embodiments are possible.
Abstract:
An electronic device is provided. The electronic device includes a microphone, memory storing one or more computer programs, and one or more processors communicatively connected to the microphone and the memory, wherein the one or more computer programs include computer-executable instructions that, when executed by the one or more processors individually or collectively, cause the electronic device to acquire, through an application, a request for performing a call with another electronic device, in response to the acquisition of the request, identify a first sampling rate corresponding to a frequency band supported by the application so as to perform communication with another electronic device, acquire an audio signal through the microphone, identify a frequency band of the audio signal, determine a type of the audio signal, based on the frequency band, determine a second sampling rate corresponding to the audio signal, based on the type of the audio signal, determine a third sampling rate corresponding to a frequency band for performing a call with another electronic device, based on the first sampling rate and the second sampling rate, determine a clock and a tuning parameter, based on the third sampling rate, and tune the audio signal, based on the clock and the tuning parameter.
Abstract:
A cognitive sensor and a method of operating the same. The cognitive sensor includes a sensor unit, which generates electric signals in response to outside stimulations; a signal processing unit, which generates sensed data regarding the outside stimulations by processing electric signals generated by the sensor unit; a cognitive circuit unit, which specifies an area of interest in the sensed data processed by the signal processing unit; and an output unit, which outputs the sensed data generated by the signal processing unit, wherein at least a portion of the sensed data output by the output unit is sensed data regarding the area of interest.
Abstract:
A method for canceling an echo and an electronic device thereof are provided. The electronic device includes a housing, a communication module, a first speaker disposed in a first region of the housing, a second speaker disposed in a second region of the housing, a first microphone disposed adjacent to the first region, a second microphone disposed adjacent to the second region, and a processor. The processor is configured to receive a first audio signal from an external electronic device, and output a first given frequency band, and output a second given frequency band, and provide a first signal by applying a filter capable of passing a band corresponding to the second given frequency band, and provide a second signal by applying a filter capable of passing a band corresponding to the first given frequency band, and provide a second audio signal corresponding to the external audio signal, and transmit the second audio signal to the external electronic device.
Abstract:
An electronic device according to an embodiment may include: a first sound input device configured to obtain external sound and produce a first signal and a processor operatively connected to the first sound input device. The processor may be configured to: receive the first signal from the first sound input device; produce a first high-frequency signal by passing the first signal through a high-pass filter to; determine a first energy value of the first high-frequency signal; determine a second energy value of the first signal; compare a product of the second energy value of the first signal and the first energy value of the first high-frequency signal with a first threshold value to produce a first result; and determine whether the first sound input device is blocked based on the first result. In addition, various other embodiments may be provided.
Abstract:
An apparatus and method for cancelling a noise of an audio signal in an electronic device are provided. The electronic device includes a communication module configured to provide a voice call service with a counterpart electronic device, a memory configured to store one or more noise cancellation variables, and a processor configured to, when a call with the counterpart electronic device is configured through the communication module, select a noise cancellation variable corresponding to a reception signal strength from the memory and cancel an audio signal noise based on a noise cancellation variable corresponding to the reception signal.