Abstract:
An electronic device for beamforming and a method thereof in a wireless communication system are provided. The electronic device includes a plurality of antennas. The electronic device also includes a plurality of transmitter and receiver switches connected to the antennas and configured to select a plurality of transmission paths and a plurality of reception paths. The electronic device further includes a plurality of first Phase Shifters (P/Ss) configured to shift a phase of Radio Frequency (RF) signals received via the antennas and the transmitter and receiver switches. The electronic device includes a combiner configured to combine the phase-shifted RF signals to one RF signal. The electronic device also includes a quadrature signal generator configured to generate a quadrature signal. The electronic device further includes a down-mixer configured to convert the quadrature signal and the combined RF signal to a first baseband signal and configured to output the first baseband signal to a modem. The electronic device includes a controller configured to control the transmitter and receiver switches, the first P/Ss, and a plurality of second P/Ss to determine a transmission or reception mode of the transmitter and receiver switches, and the phase of the RF signals transmitted and received.
Abstract:
An electronic device for beamforming and a method thereof in a wireless communication system are provided. The electronic device includes a plurality of antennas. The electronic device also includes a plurality of transmitter and receiver switches connected to the antennas and configured to select a plurality of transmission paths and a plurality of reception paths. The electronic device further includes a plurality of first Phase Shifters (P/Ss) configured to shift a phase of Radio Frequency (RF) signals received via the antennas and the transmitter and receiver switches. The electronic device includes a combiner configured to combine the phase-shifted RF signals to one RF signal. The electronic device also includes a quadrature signal generator configured to generate a quadrature signal. The electronic device further includes a down-mixer configured to convert the quadrature signal and the combined RF signal to a first baseband signal and configured to output the first baseband signal to a modem. The electronic device includes a controller configured to control the transmitter and receiver switches, the first P/Ss, and a plurality of second P/Ss to determine a transmission or reception mode of the transmitter and receiver switches, and the phase of the RF signals transmitted and received.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as long term evolution (LTE). An electronic device is provided in a wireless communication system. The device comprises a plurality of antenna sets; a plurality of antenna elements configuring the plurality of antenna sets; an RF transceiver including a plurality of switches for selecting the plurality of antenna elements and a plurality of phase shifters for shifting the phase of a signal transmitted/received through the plurality of antenna elements; and a control unit for determining a beam forming direction and the phase of the signal by simultaneously controlling the plurality of switches and the plurality of phase shifters according to a beambook.
Abstract:
The present invention relates to a method and an apparatus for direct current offset calibration of a direct conversion receiver, a Direct Current (DC) offset calibration apparatus of a direct conversion receiver includes a plurality of variable gain amplifiers for amplifying an input signal based on a gain control value, a DC offset monitoring unit for monitoring a DC offset for an output signal of the plurality of variable gain amplifiers, a plurality of variable Digital to Analog Converters (DACs) for controlling a current applied to each of the plurality of variable gain amplifiers according to a current control code, and a DC offset cancellation unit for determining a current control code set which minimizes the DC offset value per preset gain control value, and thus the DC offset can be precisely cancelled without being affected by external factors such as a signal modulation method and heat and performance degradation of the receiver can be prevented.