Abstract:
An electrolyte for a secondary battery, the electrolyte including an ionic liquid polymer including a repeating unit represented by Formula 1: wherein, in Formula 1, CY, R1, R2, R3, X1−, n, and m are the same as described in the specification.
Abstract:
A lithium battery including a negative electrode, a protected positive electrode, and an electrolyte disposed between the negative electrode and the protected positive electrode, wherein the protected positive electrode includes a positive electrode including a positive active material, and a protective layer disposed on the positive electrode, and wherein the protective layer includes a boron-containing anion receptor and a block copolymer.
Abstract:
An anodeless lithium metal battery includes: a cathode including a cathode current collector and a cathode active material layer on the cathode current collector; an anode current collector on the cathode; and a composite electrolyte between the cathode and the anode current collector, wherein the composite electrolyte includes a first liquid electrolyte and at least one of lithium metal or a lithium metal alloy.
Abstract:
A composite separator includes: a porous substrate; and a composite electrolyte on a surface of the porous substrate, the composite electrolyte including block copolymer, an ionic liquid, and a particle, wherein a size of the particle is larger than a pore size of the porous substrate, the particle includes an organic particle, an inorganic particle, an organic-inorganic particle, or a combination thereof, and the particle has a particle size of greater than about 1 micrometer to about 100 micrometers.
Abstract:
A method of charging a lithium metal battery includes charging the lithium metal battery so that a constant voltage period and a first constant current period are separated from each other in time where, the lithium metal battery is charged so that a second constant current period occurs between the first constant current period and the constant voltage period, and a current value of the second constant current period is less than a current value of the first constant current period.
Abstract:
An anodeless lithium metal battery includes: a cathode including a cathode current collector and a cathode active material layer on the cathode current collector; an anode current collector on the cathode; and a composite electrolyte between the cathode and the anode current collector, wherein the composite electrolyte includes a first liquid electrolyte and at least one of lithium metal or a lithium metal alloy.
Abstract:
An electrolyte for a secondary battery, the electrolyte including an ionic liquid polymer including a repeating unit represented by Formula 1: wherein, in Formula 1, CY, R1, R2, R3, X1−, n, and m are the same as described in the specification.
Abstract:
An all-solid secondary battery including: a cathode; an anode; and a solid electrolyte layer interposed between the cathode and the anode, wherein the cathode includes a cathode active material, wherein the anode includes an anode current collector and an anode active material layer on the anode current collector, wherein the anode active material layer includes a binder and an anode active material that does not include an alkali metal, wherein the binder includes a polymer main chain and a polyvinyl alcohol-containing copolymer, and wherein the polymer main chain includes polyvinyl alcohol, a polyvinyl alcohol derivative, or a combination thereof, and the polyvinyl alcohol-containing copolymer has at least one repeating unit linked to the polymer main chain.
Abstract:
A negative electrolyte for a lithium metal battery, the negative electrolyte including: a non-aqueous solvent comprising an ether solvent; a lithium salt having a concentration of about 1 molar to about 6 molar in the non-aqueous solvent; and a crosslinked product of a polymerizable oligomer, wherein the negative electrolyte has a gel or solid form.
Abstract:
A negative electrode for a metal battery, the negative electrode a metal substrate; and a protective layer disposed directly on at least a portion of the metal substrate, wherein the protective layer comprises an ion-conductive oligomer, wherein the ion-conductive oligomer comprises an ion-conductive structural unit in at least one of a main chain and a side chain of the an ion-conductive oligomer, and at least two hydrogen-bond-forming functional groups at different ends of the ion-conductive oligomer, and wherein the protective layer has a thickness of 5 micrometers or less.