摘要:
A thermodynamic engine is configured to convert heat provided in the form of a temperature difference to a nonheat form of energy. Heat is directed through a heating loop in thermal contact with a first side of the thermodynamic engine. A second side of the thermodynamic engine is coupled to an environmental cooling loop in thermal contact with an environmental cooling device. The thermodynamic engine is operated to dispense heat from the second side of the thermodynamic engine through the environmental cooling loop into the environmental cooling device. Operation of the thermodynamic engine thereby generates the nonheat form of energy from the temperature difference established between the first side and the second side of the thermodynamic engine.
摘要:
A thermodynamic engine is configured to convert heat provided in the form of a temperature difference to a nonheat form of energy. Heat is directed through a heating loop in thermal contact with a first side of the thermodynamic engine. A second side of the thermodynamic engine is coupled to an environmental cooling loop in thermal contact with an environmental cooling device. The thermodynamic engine is operated to dispense heat from the second side of the thermodynamic engine through the environmental cooling loop into the environmental cooling device. Operation of the thermodynamic engine thereby generates the nonheat form of energy from the temperature difference established between the first side and the second side of the thermodynamic engine.
摘要:
A thermal source provides heat to a heat engine and or one or more thermal demands, including space and water heating and heat storage. Additionally the output of the heat engine may be used for local in situ electricity needs, or directed out over the grid. A system controller monitors conditions of the components of the system, and operates that system in modes that maximize a particular benefit, such as a total accrued desired benefit obtained such as reduced electricity cost, reduced fossil fuel use, maximized return on investment and other factors. The controller may use past history of use of the system to optimize the next mode of operation, or both past and future events such as predicted solar insolation.
摘要:
A thermal source provides heat to a heat engine and or one or more thermal demands, including space and water heating and heat storage. Additionally the output of the heat engine may be used for local in situ electricity needs, or directed out over the grid. A system controller monitors conditions of the components of the system, and operates that system in modes that maximize a particular benefit, such as a total accrued desired benefit obtained such as reduced electricity cost, reduced fossil fuel use, maximized return on investment and other factors. The controller may use past history of use of the system to optimize the next mode of operation, or both past and future events such as predicted solar insolation.
摘要:
A thermodynamic engine is configured to convert heat provided in the form of a temperature difference to a nonheat form of energy. Heat is directed through a heating loop in thermal contact with a first side of the thermodynamic engine. A second side of the thermodynamic engine is coupled to an environmental cooling loop in thermal contact with an environmental cooling device. The thermodynamic engine is operated to dispense heat from the second side of the thermodynamic engine through the environmental cooling loop into the environmental cooling device. Operation of the thermodynamic engine thereby generates the nonheat form of energy from the temperature difference established between the first side and the second side of the thermodynamic engine.
摘要:
Systems and methods for operating a thermodynamic engine are disclosed. The systems and methods may effect cyclic motion of a working fluid between hot and cold regions of a thermodynamic engine and inject a dispersible material into the working fluid at the hot or cold region during a heat-addition or heat-rejection process. The system and methods may also evacuate the dispersible material from the hot or cold region.
摘要:
A thermodynamic engine is configured to convert heat provided in the form of a temperature difference to a nonheat form of energy. Heat is directed through a heating loop in thermal contact with a first side of the thermodynamic engine. A second side of the thermodynamic engine is coupled to an environmental cooling loop in thermal contact with an environmental cooling device. The thermodynamic engine is operated to dispense heat from the second side of the thermodynamic engine through the environmental cooling loop into the environmental cooling device. Operation of the thermodynamic engine thereby generates the nonheat form of energy from the temperature difference established between the first side and the second side of the thermodynamic engine.
摘要:
Systems and methods for operating a thermodynamic engine are disclosed. The systems and methods may effect cyclic motion of a working fluid between hot and cold regions of a thermodynamic engine and inject a dispersible material into the working fluid at the hot or cold region during a heat-addition or heat-rejection process. The system and methods may also evacuate the dispersible material from the hot or cold region.
摘要:
Power is generated from an ambient environment through the use of thermodynamic engines. A thermodynamic engine is disposed in the ambient environment and converts heat provided in the form of a temperature differential to a nonheat form of energy. Conditions in the ambient environment induce a phase transition in a heat-transport medium that causes the temperature differential. The heat-transport medium is renewed by allowing inducing a reverse phase transition in the heat-transport medium, permitting the heat-transport medium to repeatedly or continuously undergo the phase transition that causes the temperature differential.
摘要:
An optical routing apparatus and method that achieves improved optical signal reintegration is disclosed. The optical routing apparatus includes an input port, such as may be provided at the end of an optical fiber. The signal may be routed to one or more of a plurality of output ports, such as may also be provided at the end of an optical fiber, each output port being configured to receive the optical signal. The routing between the input port and the output ports is accomplished with an optical switching arrangement that may shift among multiple distinct optical configurations, each configuration being such as to direct the optical signal to one of the output ports. The ports are positioned such that the input port and at least one of the output ports lie in different parallel planes, each such plane being orthogonal to a path along which the optical signal is provided by the input port or received by one of the output ports.