摘要:
The subject matter described herein includes methods, systems, and computer program products for load balanced and symmetric SPF path computations for VoIP traffic engineering. One method includes advertising an output interface cost in a first direction over a first network segment between a source IP device and a destination IP device that is different from an output interface cost in advertised in a second direction over the first network segment. A plurality of available network paths between the source IP device and the destination IP device is identified. A path cost is calculated for each of the available network paths from the source IP device to the destination IP device. Calculating a path cost includes, for paths that include the first network segment, substituting the output interface cost advertised in the first direction with the output interface cost advertised in the second direction. The path costs are ranked based on the calculated costs. A lowest cost path is selected from the ranked paths. Both directions of a media session are assigned to the lowest cost path.
摘要:
Methods, systems, and computer program products for multipath Shortest-Path-First (SPF) computations and distance-based interface selection for VoIP traffic are disclosed. According to one method, a multi-path router instance associated with a plurality of network interfaces in a source IP device is provided. A cost is assigned to each of a plurality of internal segments between the multi-path router instance and the network interfaces associated with the multi-path router instance. An aggregate cost is calculated for each of a plurality of traffic paths originating at the multi-path router instance in the source IP device and extending through each of the network interfaces associated with the multi-path router instance to a destination IP device in the network. A list of IP paths is generated, and the paths in the list are ranked based on the calculated cost. Traffic is sent from the source IP device over at least one of the paths in the list. The path costs and rankings are updated in response to segment cost changes.
摘要:
Methods and systems for per-session dynamic management of media gateway resources are disclosed. According to one method, the logical and physical resources in a media gateway are divided and dynamically managed at the Transport Layer (i.e. OBI Layer 4), which results in finer granularity than managing such resources statically at the Data Link Layer (i.e. OBI Layer 2) or Network Layer (i.e. OBI Layer 3). Voice-processing resources provided by voice server cards may be pooled into a common pool available to all external networks. For each new call/session, the dynamic resource manager of the media gateway dynamically allocates a voice chip from the pooled voice processing resources, and assigns a logical resource identifier (e.g. a local IP and local UDP pair) to the session. When a network interface card receives incoming voice packets, it checks the destination IP and UDP and optionally the source IP and UDP to find out, and forward voice packets to, the voice chip assigned to the session.
摘要:
The subject matter described herein includes methods, systems, and computer program products for load balanced and symmetric SPF path computations for VoIP traffic engineering. One method includes advertising an output interface cost in a first direction over a first network segment between a source IP device and a destination IP device that is different from an output interface cost in advertised in a second direction over the first network segment. A plurality of available network paths between the source IP device and the destination IP device is identified. A path cost is calculated for each of the available network paths from the source IP device to the destination IP device. Calculating a path cost includes, for paths that include the first network segment, substituting the output interface cost advertised in the first direction with the output interface cost advertised in the second direction. The path costs are ranked based on the calculated costs. A lowest cost path is selected from the ranked paths. Both directions of a media session are assigned to the lowest cost path.
摘要:
Methods and systems for per-session traffic rate policing in a media gateway include receiving voice over IP (VoIP) packets at a media gateway where it is determined whether each VoIP packet is associated with an existing VoIP session in the media gateway. A per-session traffic rate policing policy is applied to the packets associated with the existing sessions in the media gateway. In response to determining that a packet violates the per-session traffic rate policing policy, the packet is discarded.
摘要:
Methods and systems for per-session dynamic management of media gateway resources are disclosed. According to one method, the logical and physical resources in a media gateway are divided and dynamically managed at the Transport Layer (i.e. OSI Layer 4), which results in finer granularity than managing such resources statically at the Data Link Layer (i.e. OSI Layer 2) or Network Layer (i.e. OSI Layer 3). Voice-processing resources provided by voice server cards may be pooled into a common pool available to all external networks. For each new call/session, the dynamic resource manager of the media gateway dynamically allocates a voice chip from the pooled voice processing resources, and assigns a logical resource identifier (e.g. a local IP and local UDP pair) to the session. When a network interface card receives incoming voice packets, it checks the destination IP and UDP and optionally the source IP and UDP to find out, and forward voice packets to, the voice chip assigned to the session.
摘要:
Methods and systems for per-session traffic rate policing in a media gateway include receiving voice over IP (VoIP) packets at a media gateway where it is determined whether each VoIP packet is associated with an existing VoIP session in the media gateway. A per-session traffic rate policing policy is applied to the packets associated with the existing sessions in the media gateway. In response to determining that a packet violates the per-session traffic rate policing policy, the packet is discarded.
摘要:
The subject matter described herein includes methods, systems, and computer program products for load balanced and symmetric SPF path computations for VoIP traffic engineering. One method includes advertising an output interface cost in a first direction over a first network segment between a source IP device and a destination IP device that is different from an output interface cost in advertised in a second direction over the first network segment. A plurality of available network paths between the source IP device and the destination IP device is identified. A path cost is calculated for each of the available network paths from the source IP device to the destination IP device. Calculating a path cost includes, for paths that include the first network segment, substituting the output interface cost advertised in the first direction with the output interface cost advertised in the second direction. The path costs are ranked based on the calculated costs. A lowest cost path is selected from the ranked paths. Both directions of a media session are assigned to the lowest cost path.
摘要:
Methods, systems, and computer program products for throttling network address translation (NAT) learning traffic in a voice over IP device are disclosed. According to one method, a plurality of media packets associated with a media session are received at a voice over IP device. A NAT learning throttling filter is applied to select the subset of the packets to be used for NAT learning and thereby limit the number of received media packets to be used for NAT learning. NAT learning is performed for the session using the packets selected by the NAT learning throttling filter.
摘要:
The subject matter described herein includes methods, systems, and computer program products for load balanced and symmetric SPF path computations for VoIP traffic engineering. One method includes advertising an output interface cost in a first direction over a first network segment between a source IP device and a destination IP device that is different from an output interface cost in advertised in a second direction over the first network segment. A plurality of available network paths between the source IP device and the destination IP device is identified. A path cost is calculated for each of the available network paths from the source IP device to the destination IP device. Calculating a path cost includes, for paths that include the first network segment, substituting the output interface cost advertised in the first direction with the output interface cost advertised in the second direction. The path costs are ranked based on the calculated costs. A lowest cost path is selected from the ranked paths. Both directions of a media session are assigned to the lowest cost path.