Methods of producing strain in a semiconductor waveguide and related devices
    1.
    发明授权
    Methods of producing strain in a semiconductor waveguide and related devices 有权
    在半导体波导及相关器件中生产应变的方法

    公开(公告)号:US09261647B1

    公开(公告)日:2016-02-16

    申请号:US14012877

    申请日:2013-08-28

    Abstract: Quasi-phase matched (QPM), semiconductor photonic waveguides include periodically-poled alternating first and second sections. The first sections exhibit a high degree of optical coupling (abbreviated “X2”), while the second sections have a low X2. The alternating first and second sections may comprise high-strain and low-strain sections made of different material states (such as crystalline and amorphous material states) that exhibit high and low X2 properties when formed on a particular substrate, and/or strained corrugated sections of different widths. The QPM semiconductor waveguides may be implemented as silicon-on-insulator (SOI), or germanium-on-silicon structures compatible with standard CMOS processes, or as silicon-on-sapphire (SOS) structures.

    Abstract translation: 准相位匹配(QPM),半导体光子波导包括周期性极化交替的第一和第二部分。 第一部分表现出高度的光耦合(缩写为“X2”),而第二部分具有低的X2。 交替的第一和第二部分可以包括由不同材料状态(例如结晶和无定形材料状态)制成的高应变和低应变部分,其在形成在特定基底上时呈现高的和低的X2特性,和/或应变的波纹部分 不同的宽度。 QPM半导体波导可以实现为与绝缘体上硅(SOI)或与标准CMOS工艺兼容的硅上硅结构或蓝宝石(SOS)结构。

    Method and apparatus of wide-angle optical beamsteering from a nanoantenna phased array
    2.
    发明授权
    Method and apparatus of wide-angle optical beamsteering from a nanoantenna phased array 有权
    广角相位阵列广角光束转向的方法和装置

    公开(公告)号:US09104086B1

    公开(公告)日:2015-08-11

    申请号:US14188269

    申请日:2014-02-24

    Abstract: An optical beam-steering apparatus is provided. The apparatus includes one or more optical waveguides and at least one row of metallic nanoantenna elements overlying and electromagnetically coupled to a respective waveguide. In each such row, individual nanoantenna elements are spaced apart along an optical propagation axis of the waveguide so that there is an optical propagation phase delay between successive pairs of nanoantenna elements along the row. The apparatus also includes a respective single electric heating element in thermal contact with each of the waveguides. Each heating element is arranged to heat, substantially uniformly, at least that portion of its waveguide that directly underlies the corresponding row of nanoantenna elements.

    Abstract translation: 提供了一种光束转向装置。 该装置包括一个或多个光波导和至少一排覆盖并电磁耦合到相应波导的金属纳米天线元件。 在每个这样的行中,单个纳米天线元件沿着波导的光学传播轴线间隔开,使得沿着该行的连续的纳米天线元件对之间存在光学传播相位延迟。 该装置还包括与每个波导热接触的相应的单个电加热元件。 每个加热元件布置成基本上均匀地加热其直接位于相应的纳米天线元件行下方的波导的至少该部分。

    Guided wave opto-acoustic device
    3.
    发明授权
    Guided wave opto-acoustic device 有权
    导波光声装置

    公开(公告)号:US09268092B1

    公开(公告)日:2016-02-23

    申请号:US14055774

    申请日:2013-10-16

    Abstract: The various technologies presented herein relate to various hybrid phononic-photonic waveguide structures that can exhibit nonlinear behavior associated with traveling-wave forward stimulated Brillouin scattering (forward-SBS). The various structures can simultaneously guide photons and phonons in a suspended membrane. By utilizing a suspended membrane, a substrate pathway can be eliminated for loss of phonons that suppresses SBS in conventional silicon-on-insulator (SOI) waveguides. Consequently, forward-SBS nonlinear susceptibilities are achievable at about 3000 times greater than achievable with a conventional waveguide system. Owing to the strong phonon-photon coupling achievable with the various embodiments, potential application for the various embodiments presented herein cover a range of radiofrequency (RF) and photonic signal processing applications. Further, the various embodiments presented herein are applicable to applications operating over a wide bandwidth, e.g. 100 MHz to 50 GHz or more.

    Abstract translation: 本文提出的各种技术涉及可以表现出与行波正向受激布里渊散射(前向SBS)相关联的非线性行为的各种混合声子 - 光子波导结构。 各种结构可以同时引导悬浮膜中的光子和声子。 通过利用悬浮膜,可以消除衬底通路,以消除在常规的绝缘体上硅(SOI)波导中抑制SBS的声子损失。 因此,正常SBS非线性磁化率可达到比常规波导系统可实现的大约3000倍。 由于可以用各种实施例实现的强的声子 - 光子耦合,因此本文提出的各种实施例的潜在应用涵盖射频(RF)和光子信号处理应用的范围。 此外,本文呈现的各种实施例可应用于在宽带宽(例如, 100MHz至50GHz或更高。

Patent Agency Ranking