摘要:
A method for positioning carbon nanotubes on a substrate, the substrate including a first electrode and a second electrode thereon, the second electrode being positioned oppositely from the first electrode; the method includes: applying a first AC voltage across the first and second electrodes; providing a first resistance in series with the first AC voltage; and introducing a solution including at least one carbon nanotube; wherein, when the first AC voltage is applied through the first resistance across the first and second electrodes, the at least one carbon nanotube attaches to the first and second electrodes. Another aspect of the invention includes providing a metallic area between the first and second electrodes. In an additional aspect of the invention, the substrate includes a third electrode and a fourth electrode thereon, the fourth electrode being positioned oppositely from the third electrode, the third electrode being positioned adjacent to the first electrode; the method further includes: removing the first AC voltage; applying a second AC voltage to the third and fourth electrodes, the second AC voltage causing the first and second electrodes to have a floating potential; and providing a second resistance in series with the second AC voltage; wherein when the first AC voltage is applied across the first and second electrodes, the first AC voltage causes the third and fourth electrodes to have a floating potential, and wherein, when the second AC voltage is applied through the second resistance across the third and fourth electrodes, a second carbon nanotube attaches to the third and fourth electrodes.
摘要:
Methods for laser-assisted isotope separation of tritium, using infrared multiple photon dissociation of tritium-bearing products in the gas phase. One such process involves the steps of (1) catalytic exchange of a deuterium-bearing molecule XYD with tritiated water DTO from sources such as a heavy water fission reactor, to produce the tritium-bearing working molecules XYT and (2) photoselective dissociation of XYT to form a tritium-rich product. By an analogous procedure, tritium is separated from tritium-bearing materials that contain predominately hydrogen such as a light water coolant from fission or fusion reactors.
摘要:
The present invention is directed to a method for depositing unpatterned or selectively patterned nanoparticle films of controlled thickness on the respective film deposition surface of each of a pair of electrodes. In the present method, a pair of electrodes, each having a conducting film deposition surface, are immersed in a non-conducting nonpolar solvent in which nanoparticles, each having ligands attached thereto, are suspended. A voltage is applied to the pair of electrodes thereby causing films of the nanoparticles to deposit on the respective film deposition surface of each of the pair of electrodes. The nanoparticle films formed by the present method may be unpatterned or they may be patterned by patterning the conducting film deposition surface of at least one electrode of the pair of electrodes. The nanoparticle films formed according to the method of the present invention are useful as layers in electronic devices.
摘要:
A method for deuterium enrichment by photoinduced dissociation which uses as the deuterium source a multihalogenated organic compound selected from the group consisting of a dihalomethane, a trihalomethane, a 1,2-dihaloethene, a trihaloethene, a tetrahaloethane and a pentahaloethane. The multihalogenated organic compound is subjected to intense infrared radiation at a preselected wavelength to selectively excite and thereby induce dissociation of substantially only those molecules containing deuterium to provide a deuterium enriched dissociation product. The deuterium enriched product may be combusted with oxygen to provide deuterium enriched water. The deuterium depleted undissociated molecules may be redeuterated by treatment with a deuterium source such as water.