摘要:
Manageability tools are provided for allowing an administrator to have better control over switches in a lossless network of switches. These tools provide the ability to detect slow drain and congestion bottlenecks, detect stuck virtual channels and loss of credits, while hold times on edge ASICs to be different from hold times encore ASICs, and mitigate severe latency bottlenecks.
摘要:
Manageability tools are provided for allowing an administrator to have better control over switches in a lossless network of switches. These tools provide the ability to detect slow drain and congestion bottlenecks, detect stuck virtual channels and loss of credits, while hold times on edge ASICs to be different from hold times encore ASICs, and mitigate severe latency bottlenecks.
摘要:
A hypervisor preferably provides VM identification, priority and LUN/LBA range information to the HBA when a VM is created. Alternatively, the HBA can determine that a LUN/LBA range is new and request VM identity, priority and LUN/LBA range from the hypervisor. The HBA creates a table containing the VM identification, priority and LUN/LBA range. The HBA then detects operations directed to the LUN/LBA range and does a lookup to determine VM identification and priority. VM identification and priority are then mapped into a field in a frame using a unique identifier. The unique identifier can either be placed using reserved bits on the existing Fiber Channel (FC) header or can use bits in an additional header, such as a modified IFR header.
摘要:
A hypervisor preferably provides VM identification, priority and LUN/LBA range information to the HBA when a VM is created. Alternatively, the HBA can determine that a LUN/LBA range is new and request VM identity, priority and LUN/LBA range from the hypervisor. The HBA creates a table containing the VM identification, priority and LUN/LBA range. The HBA then detects operations directed to the LUN/LBA range and does a lookup to determine VM identification and priority. VM identification and priority are then mapped into a field in a frame using a unique identifier. The unique identifier can either be placed using reserved bits on the existing Fiber Channel (FC) header or can use bits in an additional header, such as a modified IFR header.
摘要:
One embodiment of the present invention provides a system that facilitates quality of service (QoS) in a Fiber Channel (FC) network. During operation, a host bus adaptor (HBA) allocates the bandwidth on an FC link between the HBA and an FC switch into a plurality of logical channels, wherein a respective logical channel can transport data frames of variable length. Furthermore, a respective logical channel is associated with a dedicated buffer on the HBA. The HBA associates data frames from a logical entity associated with the HBA with a logical channel, and transmits data frames from the logical entity to the FC switch on the corresponding logical channel within the link from the HBA to the FC switch.
摘要:
A Layer 2 network switch is partitionable into a plurality of switch fabrics. The single-chassis switch is partitionable into a plurality of logical switches, each associated with one of the virtual fabrics. The logical switches behave as complete and self-contained switches. A logical switch fabric can span multiple single-chassis switch chassis. Logical switches are connected by inter-switch links that can be either dedicated single-chassis links or logical links. An extended inter-switch link can be used to transport traffic for one or more logical inter-switch links. Physical ports of the chassis are assigned to logical switches and are managed by the logical switch. Legacy switches that are not partitionable into logical switches can serve as transit switches between two logical switches.
摘要:
A Layer 2 network switch is partitionable into a plurality of switch fabrics. The single-chassis switch is partitionable into a plurality of logical switches, each associated with one of the virtual fabrics. The logical switches behave as complete and self-contained switches. A logical switch fabric can span multiple single-chassis switch chassis. Logical switches are connected by inter-switch links that can be either dedicated single-chassis links or logical links. An extended inter-switch link can be used to transport traffic for one or more logical inter-switch links. Physical ports of the chassis are assigned to logical switches and are managed by the logical switch. Legacy switches that are not partitionable into logical switches can serve as transit switches between two logical switches.
摘要:
Manageability tools are provided for allowing an administrator to have better control over switches in a lossless network of switches. These tools provide the ability to detect slow drain and congestion bottlenecks, detect stuck virtual channels and loss of credits, while hold times on edge ASICs to be different from hold times encore ASICs, and mitigate severe latency bottlenecks.
摘要:
Manageability tools are provided for allowing an administrator to have better control over switches in a lossless network of switches. These tools provide the ability to detect slow drain and congestion bottlenecks, detect stuck virtual channels and loss of credits, while hold times on edge ASICs to be different from hold times encore ASICs, and mitigate severe latency bottlenecks.
摘要:
Manageability tools are provided for allowing an administrator to have better control over switches in a lossless network of switches. These tools provide the ability to detect slow drain and congestion bottlenecks, detect stuck virtual channels and loss of credits, while hold times on edge ASICs to be different from hold times encore ASICs, and mitigate severe latency bottlenecks.