摘要:
A phosphor includes particles having an average particle size of from 10 nm to 2 μm, wherein 90% by mass or more of all of the particles have particle sizes within ±30% of the average particle size and a ratio of particles having no corners to all of the particles is 80% or more in number.
摘要:
A precursor of a silicate phosphor is formed by mixing a silicon system liquid material, in which a silicon system material is dispersed in a liquid, with a metal system liquid material including a metallic element, and the silicate phosphor is obtained by calcining the obtained precursor.
摘要:
At least one kind of a rear earth element or an alkaline earth metal element is activated together with manganese in a zinc silicate system phosphor, and a mean particle size of the phosphor is between 0.01 and 1.0 μm.
摘要:
The present invention relates to a production method of a phosphor comprising the steps of: forming a phosphor precursor in a liquid phase; drying the phosphor precursor; and firing the dried phosphor precursor to obtain the phosphor. At least one of the forming step, drying step and firing step is conducted in the presence of a binder.
摘要:
A green light emitting silicate-containing phosphor having both enhanced luminescence intensity and a shortened persistence time and a method for manufacturing the foregoing phosphor can be provided, and a phosphor precursor can also be manufactured by releasing a mixed solution from an exit of the outlet flow passage, after a suspension containing a silicon compound is supplied into the first inlet flow passage, a solution containing a metallic compound for forming a silicate-containing phosphor precursor is supplied into the second inlet flow passage, and the foregoing suspension and solution are introduced into the contact section so as to mix with each other with controlling a flow of the mixed solution so as to keep a Reynolds number of the mixed solution to be 3×103 to 1×106.
摘要:
A manganese activated zinc silicate phosphor comprising phosphor particles having a crystal lattice distortion factor of 0.01 to 1.0% which exhibits high emission intensity and reduced afterglow time and a PDP utilizing the same which exhibits high white luminance and a high luminance maintaining ratio.
摘要:
A green light emitting silicate-containing phosphor having both enhanced luminescence intensity and a shortened persistence time and a method for manufacturing the foregoing phosphor can be provided, and a phosphor precursor can also be manufactured by releasing a mixed solution from an exit of the outlet flow passage, after a suspension containing a silicon compound is supplied into the first inlet flow passage, a solution containing a metallic compound for forming a silicate-containing phosphor precursor is supplied into the second inlet flow passage, and the foregoing suspension and solution are introduced into the contact section so as to mix with each other with controlling a flow of the mixed solution so as to keep a Reynolds number of the mixed solution to be 3×103 to 1×106.
摘要:
Disclosed are a phosphor in which prevention of aging deterioration of luminance and prevention of deterioration of discharging characteristics are compatible, a method of manufacturing the phosphor, and a plasma display panel manufactured by using the phosphor. A phosphor of the invention containing Mn as an activator is one with Mn serving as a major emission, wherein a ratio of an activator concentration in a superficial portion of a phosphor particle to an activator concentration inside the phosphor particle is 0.3-0.7.
摘要:
A manganese activated zinc silicate phosphor comprising phosphor particles having a crystal lattice distortion factor of 0.01 to 1.0% which exhibites high emission intensity and reduced afterglow time and a PDP utilizing the same which exhibites high white luminance and a high luminance maintaining ratio.
摘要:
A biomolecule detection reagent comprising semiconductor nanoparticles and magnetic nanoparticles, incorporated in a bead comprising an inorganic compound or an organic polymer, and a surface of the beads is modified with a biomolecule detection molecule.