摘要:
The present invention relates to a method for preparing a graphene-containing inorganic coating composition for coating non-ferrous metal objects and a graphene-containing inorganic coating composition prepared thereby, in which the inorganic coating composition contains liquid silica sol that emits far-infrared rays and powdery graphene that has very excellent thermal conductivity, and thus it emits far-infrared rays beneficial to the human body while having excellent durability and thermal conductivity. The method comprises: adding isopropyl alcohol as a solvent to liquid silica sol and a liquid sealant, followed by uniform stirring for 2-3 hours, thereby preparing a first liquid binder; adding powdery graphene, filler and pigment to the first liquid binder, followed by stirring for 8-10 hours, thereby preparing a second binder; and adding a predetermined amount of an adhesion-enhancing agent to the second binder, followed by aging at a temperature of 25 to 32° C. for 9 to 11 hours.
摘要:
Disclosed are smoothing phosphors for AC LED lighting that are capable of prolonging the light emission time of an AC LED (or array of AC LEDs) during a ½ cycle response to a, phase change of the alternating current to substantially reduce flicker. The smoothing phoshor of the present teachings comprises a matrix represented by the formula: (1−k−r−v)M·(m−p)X·(n−0.5x−0.5y)Al2O3:(x+p)MnO, ySiO2, kEu, rR, vLi, wherein M is at least one of La2O3, Ce2O3, Gd2O3, Lu2O3, Ba2OF2, Sr2OF2, Ca2OF2, Ba2OCl2, Sr2OCl2, Ca2OCl, BaO, SrO, CaO, or ZnO; provided that when M comprises BaO, SrO, CaO, or ZnO, M does not comprise La2O3, Ce2O3, Gd2O3, Lu2O3, Ba2OF2, Sr2OF2, Ca2OF2, Ba2OCl2, Sr2OCl2, or Ca2OCl2; X is at least one of MgO or ZnO; R is at least one of Sm, Pr, Tb, Dy, Er, or Ho; m=0 to 2; n=4 to 11; x=0.005 to 1; y=0.005 to 1; p=0 to 1; k=0 to 0.2; r=0 to 0.2; and v=0 to 0.2.
摘要:
The silicate of magnesium and of barium, strontium or calcium of the invention is characterized in that it is in the form of a suspension of solid crystallized particles in a liquid phase, said particles having a mean size between 0.1 μm and 1 μm. It is prepared by spray-drying a liquid mixture comprising compounds of magnesium, of silicium and of at least one first element chosen from barium, strontium and calcium, by submitting the dried mixture to a first calcination in air and to a second calcination in a reducing atmosphere and by wet milling the calcined mixture.
摘要:
In some embodiments, a composition includes: a conversion material and a bisphenol-A polycarbonate; wherein a molded article of the bisphenol-A polycarbonate has a transmission level of greater than or equal to 90.0% at a thickness of 2.5 mm as measured by ASTM D1003-00; and wherein the molded article comprises an increase in the yellow index of less than 2 during 2,000 hours of heat aging at 130° C.; and wherein the conversion material comprises a yellow conversion material, a green conversion material, a red conversion material, or a combination comprising at least one of the foregoing.
摘要:
The present invention relates to the development of tracer fluids, more generally, that of aqueous liquids, intended to be injected under pressure in an oil reservoir, for example from an injection well up to a production well.The object of the invention is to propose a new method of study of a solid medium, i.e. an oil reservoir, by diffusion of a liquid (i.e. injection waters) containing tracers, through said solid medium, which is simple to implement and economical and which remedies the drawbacks of the known tracers for injection waters of oil reservoirs.This method essentially consisting of injecting, in this solid medium, an injection liquid comprising a nanoparticle-based tracer having average dimensions comprised between 20 and 200 nm, detectable by means of one or several S signals at dilutions of less than or equal to 10−7, adapted to form a stable colloidal suspension in a saline medium, at least a portion of which is constituted of a core and a coating provided with an adjustable hydrophilic-lipophilic balance (HLB) and comprising at least one organic and/or organosilicon component; recovering the liquid having diffused; and analyzing this liquid having diffused to measure the quantity of tracer by detection of the signal or signals S.
摘要:
A light source module includes first and second light sources. The first light source includes a blue light-emitting body emitting blue light and a red fluorescent material disposed around the blue light-emitting body emitting red light by virtue of being excited by the blue light. The second light source is disposed adjacent to the first light source, and includes a green light-emitting body emitting green light. The blue and green light-emitting materials may include a light-emitting diode (LED) chip including substantially the same material. Accordingly, since a variation of light efficiency of the light source module with respect to temperature is small, a color feedback system may be omitted, and color reproducibility may be high.
摘要:
An inorganic nanoparticle labeling agent having adaptability for being employed as a labeled material in the field of biology and medical science and capable of emitting fluorescence at a stable emission intensity is disclosed, comprising inorganic nanoparticles which were surface-modified with an organic compound, wherein the inorganic nanoparticles exhibit an average particle size of 1 to 10 nm, the organic compound is a compound containing a polyethylene glycol chain, the average particle size D of the inorganic nanoparticle labeling agent is from 8 to 25 nm; and an amount M (mol) of the organic compound per inorganic nanoparticle and a length L (nm) of the organic compound measured from an inorganic nanoparticle surface meet the relationship represented by the following formula (I): (M×1022)×L/D=1.0−4.5 Formula (I)
摘要翻译:公开了一种具有适用于在生物学和医学领域中用作标记材料并且能够以稳定发射强度发射荧光的适应性的无机纳米颗粒标记剂,其包括用有机化合物进行表面改性的无机纳米颗粒,其中 无机纳米粒子的平均粒径为1〜10nm,有机化合物为含有聚乙二醇链的化合物,无机纳米粒子标记剂的平均粒径D为8〜25nm, 无机纳米粒子的有机化合物的M(摩尔)和无机纳米粒子表面的有机化合物的长度L(nm)满足下式(I)所示的关系:(M×1022)×L / D = 1.0-4.5式(I)
摘要:
Novel phosphor systems for a white LED are disclosed. The phosphor systems are excited by a non-visible to near-UV radiation source having an excitation wavelength ranging from about 250 to 420 nm. The phosphor system may comprise one phosphor, two phosphors, and may include optionally a third and even a fourth phosphor. In one embodiment of the present invention, the phosphor is a two phosphor system having a blue phosphor and a yellow phosphor, wherein the long wavelength end of the blue phosphor is substantially the same wavelength as the short wavelength end of the yellow phosphor. Alternatively, there may be a wavelength gap between the yellow and blue phosphors. The yellow phosphor may be phosphate or silicate-based, and the blue phosphor may be silicate or aluminate-based. Single phosphor systems excited by non-visible radiation are also disclosed. In other embodiments of present invention, a single phosphor is used to produce white light illumination, the single phosphor having a broad emission spectrum with a peak intensity ranging from about 520 to 560 nm.
摘要:
The invention is a phosphor which includes a phosphor material having a composition represented by a general formula: M(0)aM(1)bM(2)x−(vm+n)M(3)(vm+n)−yOnNz−n, wherein M(0) is one or more elements selected from Li, Na, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Gd and Lu; M(1) is one or more activators selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm and Yb; M(2) is one or more elements selected from Si, Ge, Sn, Ti, Hf and Zr; M(3) is one or more elements selected from Be, B, Al, Ga, In, Tl and Zn; O is oxygen; N is nitrogen; and an atomic ratio of M(0), M(1), M(2), M(3), O and N is adjusted to satisfy the following: x, y and z satisfy 33≦x≦51, 8≦y≦12 and 36≦z≦56; a and b satisfy 3≦a+b≦7 and 0.001≦b≦1.2; m and n satisfy 0.8·me≦m≦1.2·me and 0≦n≦7 in which me=a+b; and v satisfies v={a·v(0)+b·v(1)}/(a+b) (wherein v(0) is a valence of M(0) ion and v(1) is a valence of M(1) ion). The invention also relates to a method for producing the phosphor and a light-emitting device using the phosphor.
摘要:
A light source module includes first and second light sources. The first light source includes a blue light-emitting body emitting blue light and a red fluorescent material disposed around the blue light-emitting body emitting red light by virtue of being excited by the blue light. The second light source is disposed adjacent to the first light source, and includes a green light-emitting body emitting green light. The blue and green light-emitting materials may include a light-emitting diode (LED) chip including substantially the same material. Accordingly, since a variation of light efficiency of the light source module with respect to temperature is small, a color feedback system may be omitted, and color reproducibility may be high.