INFORMATION EXTRACTION FROM DAILY DRILLING REPORTS USING MACHINE LEARNING

    公开(公告)号:US20220372866A1

    公开(公告)日:2022-11-24

    申请号:US17753759

    申请日:2020-09-14

    摘要: A system and method are provided for extracting information regarding a drill site including forming one or more documents having one or more raw comments regarding a well site. Raw data may be extracted from the one or more documents to produce extracted raw data. The extracted raw date may be pre-processed by removing ambiguity, artifacts, and/or formatting errors from the one or more raw comments to produce pre-processed data. Topics data may be extracted from the pre-processed data using a natural language processing (NLP) algorithm to produce extracted topics data. Measurement data may also be extracted from the pre-processed data using the NLP algorithm to produce extracted measurement data. The extracted topics data and the extracted measurement data may be aggregated to form a set of discrete data points, such as calibration points, per comment to produce aggregated data and one more calibration points may be identified from the aggregated data. The results of the one or more calibration points may then be presented.

    Information extraction from daily drilling reports using machine learning

    公开(公告)号:US12129755B2

    公开(公告)日:2024-10-29

    申请号:US17753759

    申请日:2020-09-14

    摘要: A system and method are provided for extracting information regarding a drill site including forming one or more documents having one or more raw comments regarding a well site. Raw data may be extracted from the one or more documents to produce extracted raw data. The extracted raw date may be pre-processed by removing ambiguity, artifacts, and/or formatting errors from the one or more raw comments to produce pre-processed data. Topics data may be extracted from the pre-processed data using a natural language processing (NLP) algorithm to produce extracted topics data. Measurement data may also be extracted from the pre-processed data using the NLP algorithm to produce extracted measurement data. The extracted topics data and the extracted measurement data may be aggregated to form a set of discrete data points, such as calibration points, per comment to produce aggregated data and one more calibration points may be identified from the aggregated data. The results of the one or more calibration points may then be presented.