Abstract:
A method includes varying a temperature of a treatment fluid. The treatment fluid is pumped into the first wellbore as part of a fluid diversion process or a fluid treatment process after the temperature of the treatment fluid is varied. A first downhole measurement is obtained in the first wellbore using a cable in the first wellbore or a first sensor coupled to the cable concurrently with or after the fluid diversion process or the fluid treatment process. An additional measurement is obtained concurrently with obtaining the first downhole measurement. The first downhole measurement and the additional measurement are combined or compared. A location where the treatment fluid is flowing through perforations in the first wellbore is determined based upon the combining or comparing the first downhole measurement and the additional measurement.
Abstract:
Method for well re-stimulation treatment using instantaneous shut-in pressure (ISIP) to guide the design and execution of refracturing stages. Pore pressure and optional cluster stresses are determined at a start of the treatment. Goal ISIPs for the refracturing correspond to undepleted regions of the formation, and target ISIPs versus treatment progression/stage range from about a lowest pore pressure corresponding to depleted regions of the formation up to within the goal range ISIPs. Diversion and proppant pumping schedules are designed, and the refracturing treatment is initiated in accordance with the design. ISIP is measured at stage end, and if it varies from the target ISIP, subsequent stages are modified from the design as needed to more closely match the ISIP schedule.
Abstract:
A method for treating a subterranean formation utilizing a composition having a plurality of shrinkable materials. The method of treatment may include providing a hydraulic fracture into the subterranean formation, and injecting a slurry having a plurality of shrinkable materials into a far field. The shrinkable materials may shrink once a threshold is reached.
Abstract:
A method includes running a cable into a first wellbore. A fluid diversion process is initiated in the first wellbore. A first downhole measurement is captured in the first wellbore using the cable or a first sensor coupled thereto concurrently with or after the fluid diversion process. An additional measurement is captured concurrently with capturing the first downhole measurement. The first downhole measurement and the additional measurement are compared or combined. A location where fluid is flowing through perforations in the first wellbore is determined based upon the combining or comparing the first downhole measurement and the additional measurement.