Abstract:
Systems and methods are presented for detecting high-impedance faults (HIFs) in an electric power delivery system using a plurality of coordinated high-impedance fault detection systems. In certain embodiments, a method for HIFs may include receiving first and second current representations associated with first and second locations of the electric power delivery system respectively. Based on at least one of the first and second current representations, the occurrence of an HIF may be determined. A relative location of the HIF may be determined based on a relative amount of interharmonic content associated with an HIF included in the first and second current representations, and a protective action may be taken based on the determined relative location.
Abstract:
Disclosed herein are systems for determining a broken conductor condition in a multiple-phase electric power delivery system. It has been observed that broken conductors pose a safety concern when occurring in the presence of people or vulnerable environmental conditions. Broken conductor conditions disclosed herein may be used to detect and trip the phase with the broken conductor, thus reducing or even eliminating the safety risk. Further, a distance to the opening may be determined.
Abstract:
Systems and methods including improving availability of protection of an electric power delivery system even upon unavailability of power system signals. Such protection relays may provide protection using signals from the power system and provide the signals to an integrator or another device. Upon unavailability of power system signals to a protection relay, the integrator sends substitute power system signals may be provided to the protection relay. The protection relay may continue to provide protection using the substitute power system signals.
Abstract:
Systems and methods are presented for detecting high-impedance faults (HIFs) in an electric power delivery system using a plurality of coordinated high-impedance fault detection systems. In certain embodiments, a method for HIFs may include receiving first and second current representations associated with first and second locations of the electric power delivery system respectively. Based on at least one of the first and second current representations, the occurrence of an HIF may be determined. A relative location of the HIF may be determined based on a relative amount of interharmonic content associated with an HIF included in the first and second current representations, and a protective action may be taken based on the determined relative location.
Abstract:
The present disclosure relates to systems and methods tracking an alternating current frequency in an electric power system. In one embodiment, a system may include a waveform receiving subsystem to receive a representation of a current waveform. A sampling subsystem may sample the representation of a current waveform at a first estimated frequency and generate a sampled representation of the current waveform. A filtered and sampled representation of the current waveform may be generated using a filter subsystem. A period subsystem may determine an estimated period of the filtered and sampled representation of the current waveform. A frequency determination subsystem may determine a second estimated frequency based on the estimated period. The second estimated frequency may then be used by the sampling subsystem in a subsequent iteration to sample a subsequent representation of the current waveform.
Abstract:
Disclosed herein are systems for determining a broken conductor condition in a multiple-phase electric power delivery system. It has been observed that broken conductors pose a safety concern when occurring in the presence of people or vulnerable environmental conditions. Broken conductor conditions disclosed herein may be used to detect and trip the phase with the broken conductor, thus reducing or even eliminating the safety risk. Further, a distance to the opening may be determined.
Abstract:
Systems and methods including improving availability of protection of an electric power delivery system even upon unavailability of power system signals. Such protection relays may provide protection using signals from the power system and provide the signals to an integrator or another device. Upon unavailability of power system signals to a protection relay, the integrator sends substitute power system signals may be provided to the protection relay. The protection relay may continue to provide protection using the substitute power system signals.