Abstract:
An apparatus comprises a light source configured to generate light, and a modulator coupled to the light source and configured to modulate the light above a predetermined frequency. A slider is configured for heat-assisted magnetic recording and to receive the modulated light. A resistive sensor is integral to the slider and subject to heating by absorption of electromagnetic radiation and conduction of heat. Measuring circuitry is coupled to the resistive sensor and configured to measure a response of the resistive sensor due to absorbed electromagnetic radiation and not from the heat conduction. The measuring circuitry may further be configured to determine output optical power of the light source using the measured resistive sensor response.
Abstract:
An apparatus comprises a light source configured to generate light, and a modulator coupled to the light source and configured to modulate the light above a predetermined frequency. A slider is configured for heat-assisted magnetic recording and to receive the modulated light. A resistive sensor is integral to the slider and subject to heating by absorption of electromagnetic radiation and conduction of heat. Measuring circuitry is coupled to the resistive sensor and configured to measure a response of the resistive sensor due to absorbed electromagnetic radiation and not from the heat conduction. The measuring circuitry may further be configured to determine output optical power of the light source using the measured resistive sensor response.
Abstract:
An apparatus comprises a light source configured to generate light, and a modulator coupled to the light source and configured to modulate the light above a predetermined frequency. A slider is configured for heat-assisted magnetic recording and to receive the modulated light. A resistive sensor is integral to the slider and subject to heating by absorption of electromagnetic radiation and conduction of heat. Measuring circuitry is coupled to the resistive sensor and configured to measure a response of the resistive sensor due to absorbed electromagnetic radiation and not from the heat conduction. The measuring circuitry may further be configured to determine output optical power of the light source using the measured resistive sensor response.
Abstract:
An apparatus comprises a light source configured to generate light, and a modulator coupled to the light source and configured to modulate the light above a predetermined frequency. A slider is configured for heat-assisted magnetic recording and to receive the modulated light. A resistive sensor is integral to the slider and subject to heating by absorption of electromagnetic radiation and conduction of heat. Measuring circuitry is coupled to the resistive sensor and configured to measure a response of the resistive sensor due to absorbed electromagnetic radiation and not from the heat conduction. The measuring circuitry may further be configured to determine output optical power of the light source using the measured resistive sensor response.
Abstract:
A slider configured for heat-assisted magnetic recording includes a laser diode optically coupled to a waveguide of the slider. A power supply is coupled to the laser diode. A preamplifier is coupled to the power supply. The preamplifier is configured to monitor a forward voltage across the laser diode while operating the laser diode at a constant current during a write operation, detect a change in the forward voltage indicative of laser power instability, and generate a signal in response to detecting the forward voltage change.
Abstract:
A slider configured for heat-assisted magnetic recording includes a laser diode optically coupled to a waveguide of the slider. A power supply is coupled to the laser diode. A preamplifier is coupled to the power supply. The preamplifier is configured to monitor a forward voltage across the laser diode while operating the laser diode at a constant current during a write operation, detect a change in the forward voltage indicative of laser power instability, and generate a signal in response to detecting the forward voltage change.
Abstract:
A slider configured for heat-assisted magnetic recording includes a laser diode optically coupled to a waveguide of the slider. A power supply is coupled to the laser diode. A preamplifier is coupled to the power supply. The preamplifier is configured to monitor a forward voltage across the laser diode while operating the laser diode at a constant current during a write operation, detect a change in the forward voltage indicative of laser power instability, and generate a signal in response to detecting the forward voltage change.
Abstract:
First and second repeatable runout (ZAP) values are both located on a first virtual track of a magnetic disk. The first ZAP value is offset from the first virtual track center in a first direction and the second ZAP value is offset from the first virtual track center in a second direction opposite the first direction. At least one of the first and second ZAP values are accessed when performing repeatable runout correction for a writer of the read/write head that is being positioned over a second virtual track of the magnetic disk.