Abstract:
Implementations described and claimed herein include a reader structure, comprising a first reader, including a sensor stack and a top shield structure, the top shield structure comprises a synthetic antiferromagnetic shield (SAF) structure, including a reference layer including at least a layer of NiFe and an impurity additive, an RKKY coupling layer RKKY coupling layer (e.g., Ru layer), and a pinned layer. In another implementation, the RL of the SAF shield structure of a first reader includes at least a layer of amorphous magnetic material. Yet, in another implementation, the SAF shield structure includes an insertion layer of amorphous magnetic material under the SAF shield RL, within the SAF shield RL or between the SAF shield RL and SAF shield Ru.
Abstract:
A multi-sensor reader that includes a first sensor that has a first sensor stack, which includes a sensing layer that has a magnetization that changes according to an external magnetic field. The first sensor also includes a first seed element below the first sensor stack. The multi-sensor reader also includes a second sensor stacked over the first sensor. The second sensor includes a second sensor stack, which includes a sensing layer that has a magnetization that changes according to the external magnetic field. The second sensor also includes a second seed element below the second sensor stack. The second seed element is structurally different from the first seed element and includes a stabilization feature.
Abstract:
A multi-sensor reader that includes a first sensor that has a sensing layer with a magnetization that changes according to an external magnetic field. The first sensor also includes first and second side biasing magnets having a magnetization substantially along a first direction. The first and second side biasing magnets align the magnetization of the sensing layer substantially along the first direction when the sensing layer is not substantially influenced by the external magnetic field. The multi-sensor reader further includes a second sensor that is stacked over the first sensor. The second sensor includes a reference layer that has a magnetization that is set substantially along a second direction. The first sensor further includes at least one sensor-stabilization feature that counteracts an influence of a magnetic field utilized to set the magnetization of the reference layer of the second sensor in the second direction on the magnetization of at least one of the first and second side biasing magnets in the first direction.
Abstract:
Implementations described and claimed herein include a reader structure, comprising a first reader, including a sensor stack and a top shield structure, the top shield structure comprises a synthetic antiferromagnetic shield (SAF) structure, including a reference layer including at least a layer of NiFe and an impurity additive, an RKKY coupling layer RKKY coupling layer (e.g., Ru layer), and a pinned layer. In another implementation, the RL of the SAF shield structure of a first reader includes at least a layer of amorphous magnetic material. Yet, in another implementation, the SAF shield structure includes an insertion layer of amorphous magnetic material under the SAF shield RL, within the SAF shield RL or between the SAF shield RL and SAF shield Ru.
Abstract:
A multi-sensor reader that includes a first sensor that has a first sensor stack, which includes a sensing layer that has a magnetization that changes according to an external magnetic field. The first sensor also includes a first seed layer below the first sensor stack. The multi-sensor reader also includes a second sensor stacked over the first sensor. The second sensor includes a second sensor stack, which includes a sensing layer that has a magnetization that changes according to the external magnetic field. The second sensor also includes a second seed layer below the second sensor stack. A stabilization element is included to maintain a magnetization direction of the second seed layer and to stabilize the second seed layer.
Abstract:
Implementations described and claimed herein include a reader structure, comprising a first reader, including a sensor stack and a top shield structure, the top shield structure comprises a synthetic antiferromagnetic shield (SAF) structure, including a reference layer including at least a layer of NiFe and an impurity additive, an RKKY coupling layer RKKY coupling layer (e.g., Ru layer), and a pinned layer. In another implementation, the RL of the SAF shield structure of a first reader includes at least a layer of amorphous magnetic material. Yet, in another implementation, the SAF shield structure includes an insertion layer of amorphous magnetic material under the SAF shield RL, within the SAF shield RL or between the SAF shield RL and SAF shield Ru.
Abstract:
A multi-sensor reader that includes a first sensor that has a sensing layer with a magnetization that changes according to an external magnetic field. The first sensor also includes first and second side biasing magnets having a magnetization substantially along a first direction. The first and second side biasing magnets align the magnetization of the sensing layer substantially along the first direction when the sensing layer is not substantially influenced by the external magnetic field. The multi-sensor reader further includes a second sensor that is stacked over the first sensor. The second sensor includes a reference layer that has a magnetization that is set substantially along a second direction. The first sensor further includes at least one sensor-stabilization feature that counteracts an influence of a magnetic field utilized to set the magnetization of the reference layer of the second sensor in the second direction on the magnetization of at least one of the first and second side biasing magnets in the first direction.