Abstract:
Implementations described and claimed herein include a reader structure, comprising a first reader, including a sensor stack and a top shield structure, the top shield structure comprises a synthetic antiferromagnetic shield (SAF) structure, including a reference layer including at least a layer of NiFe and an impurity additive, an RKKY coupling layer RKKY coupling layer (e.g., Ru layer), and a pinned layer. In another implementation, the RL of the SAF shield structure of a first reader includes at least a layer of amorphous magnetic material. Yet, in another implementation, the SAF shield structure includes an insertion layer of amorphous magnetic material under the SAF shield RL, within the SAF shield RL or between the SAF shield RL and SAF shield Ru.
Abstract:
A magnetic stack is disclosed. The magnetic stack includes a magnetically responsive lamination that includes a ferromagnetic free layer, a synthetic antiferromagnetic (SAF) structure, and a spacer layer positioned between the ferromagnetic free layer and the SAF structure. The magnetically responsive lamination is separated from a sensed data bit stored in an adjacent medium by an air bearing surface (ABS). The stack also includes a first antiferromagnetic (AFM) structure coupled to the SAF structure a predetermined offset distance from the ABS, and a second AFM structure that is separated from the first AFM structure by a first shield layer.
Abstract:
A magnetic stack is disclosed. The magnetic stack includes a magnetically responsive lamination that includes a ferromagnetic free layer, a synthetic antiferromagnetic (SAF) structure, and a spacer layer positioned between the ferromagnetic free layer and the SAF structure. The magnetically responsive lamination is separated from a sensed data bit stored in an adjacent medium by an air bearing surface (ABS). The stack also includes a first antiferromagnetic (AFM) structure coupled to the SAF structure a predetermined offset distance from the ABS, and a second AFM structure that is separated from the first AFM structure by a first shield layer.
Abstract:
A method of planarizing a device having a surface topography with at least one material at a surface of the device is described. The method comprises the steps of depositing a stop layer over at least a portion of the at least one material which substantially retains the surface topography of the device. A sacrificial layer is deposited over at least a portion of the stop layer. A planarization process is performed on the device. The planarization process includes the steps of performing a chemical mechanical polish (CMP) on the top surface of the sacrificial layer. A physical removal step is conducted on the remainder portion of the sacrificial layer to form a planarized surface. A second CMP step and a second physical removal step are conducted, to form a planarized device.
Abstract:
Implementations described and claimed herein include a reader structure, comprising a first reader, including a sensor stack and a top shield structure, the top shield structure comprises a synthetic antiferromagnetic shield (SAF) structure, including a reference layer including at least a layer of NiFe and an impurity additive, an RKKY coupling layer RKKY coupling layer (e.g., Ru layer), and a pinned layer. In another implementation, the RL of the SAF shield structure of a first reader includes at least a layer of amorphous magnetic material. Yet, in another implementation, the SAF shield structure includes an insertion layer of amorphous magnetic material under the SAF shield RL, within the SAF shield RL or between the SAF shield RL and SAF shield Ru.
Abstract:
A multi-sensor reader that includes a first sensor that has a sensing layer with a magnetization that changes according to an external magnetic field. The first sensor also includes first and second side biasing magnets having a magnetization substantially along a first direction. The first and second side biasing magnets align the magnetization of the sensing layer substantially along the first direction when the sensing layer is not substantially influenced by the external magnetic field. The multi-sensor reader further includes a second sensor that is stacked over the first sensor. The second sensor includes a reference layer that has a magnetization that is set substantially along a second direction. The first sensor further includes at least one sensor-stabilization feature that counteracts an influence of a magnetic field utilized to set the magnetization of the reference layer of the second sensor in the second direction on the magnetization of at least one of the first and second side biasing magnets in the first direction.
Abstract:
The implementations disclosed herein provide for a spin transport sensor including a synthetic antiferromagnet (SAF) adjacent a shield element. The SAF extends to an air-bearing surface (ABS) and provides a current path from a current source to an ABS-region of a spin conductor layer. Spin current diffuses from the spin conductor layer to an adjacent free layer, which generates a measurable electrical voltage in a free layer of the spin transport sensor. The SAF serves as both a magnetic shield and a spin injector to the spin conductor layer.
Abstract:
Implementations described and claimed herein include a reader structure, comprising a first reader, including a sensor stack and a top shield structure, the top shield structure comprises a synthetic antiferromagnetic shield (SAF) structure, including a reference layer including at least a layer of NiFe and an impurity additive, an RKKY coupling layer RKKY coupling layer (e.g., Ru layer), and a pinned layer. In another implementation, the RL of the SAF shield structure of a first reader includes at least a layer of amorphous magnetic material. Yet, in another implementation, the SAF shield structure includes an insertion layer of amorphous magnetic material under the SAF shield RL, within the SAF shield RL or between the SAF shield RL and SAF shield Ru.
Abstract:
A reader stack, such as for a magnetic storage device, the stack having a top synthetic antiferromagnetic (SAF) layer, a magnetic capping layer adjacent to the top SAF layer, an RKKY coupling layer adjacent to the magnetic capping layer opposite the top SAF layer, and a free layer adjacent to the RKKY coupling layer opposite the magnetic capping layer. Also included is a method for biasing a free layer in a reader stack by providing an exchange coupling between the free layer and a top synthetic antiferromagnetic (SAF) layer using a layer having RKKY coupling property positioned between the free layer and the top SAF layer and a magnetic capping layer between the SAF layer and the layer having RKKY coupling property.
Abstract:
A multi-sensor reader that includes a first sensor that has a sensor stack, which includes a free layer (FL) that has a magnetization that changes according to an external magnetic field. The first sensor also includes a shielding structure that is positioned over the sensor stack. The multi-sensor reader also includes a second sensor stacked over the first sensor. The second sensor includes a sensor stack, which includes a FL that has a magnetization that changes according to the external magnetic field. The multi-sensor reader further includes an isolation layer between the first sensor and the second sensor. A FL-to-FL spacing reduction feature is included in at least one of the isolation layer or the shielding structure.