Abstract:
A filter system for an imaging apparatus including a high resolution mode of operation and a low resolution mode of operation is provided. The filter system includes a low pass filter associated with an optical path of the imaging apparatus. The low pass filter is moveable into the optical path of the imaging apparatus when the imaging apparatus is in the low resolution mode of operation and is moveable out of the optical path of the imaging apparatus when the imaging apparatus is in the high resolution mode of operation.
Abstract:
An imaging device for generating a digital image of a scene comprises an image sensor, an optic, and one or more actuators. The image sensor comprises an array of photosensors. The optic is operative to at least partially direct light rays from the scene onto this image sensor so that an image of the scene is created on the image sensor. The one or more actuators are operative to move at least one of the image sensor and the optic while the digital image is generated so that the incoming light rays from the scene are distributed over the photosensors of the image sensor in such a way as to limit spatial frequencies in the image of the scene created on the image sensor to values below a Nyquist frequency of the image sensor.
Abstract:
Imaging systems and methods for calibrating imaging systems are provided. The imaging system has a body, a scene image capture system that captures images using a taking lens system that can be set to a plurality of different focus distances, and a rangefinder that is capable of determining a distance between the imaging system and at least one portion of a field of view of the taking lens system. The method comprises: automatically capturing a first calibration image of a first field of view through the taking lens system with the taking lens system set to a first focus distance setting; identifying a portion of the first calibration image having a predetermined degree of focus; using the rangefinder to determine a first calibration distance from the imaging device to the identified portion. A focus correlation is determined based upon the first calibration distance and the first focus distance setting.
Abstract:
Imaging systems and methods for calibrating imaging systems are provided. The imaging system has a body, a scene image capture system that captures images using a taking lens system that can be set to a plurality of different focus distances, and a rangefinder that is capable of determining a distance between the imaging system and at least one portion of a field of view of the taking lens system. The method comprises: automatically capturing a first calibration image of a first field of view through the taking lens system with the taking lens system set to a first focus distance setting; identifying a portion of the first calibration image having a predetermined degree of focus; using the rangefinder to determine a first calibration distance from the imaging device to the identified portion. A focus correlation is determined based upon the first calibration distance and the first focus distance setting.
Abstract:
Imaging systems and methods for calibrating imaging systems are provided. The imaging system has a body, a scene image capture system that captures images using a taking lens system that can be set to a plurality of different focus distances, and a rangefinder that is capable of determining a distance between the imaging system and at least one portion of a field of view of the taking lens system. The method comprises: automatically capturing a first calibration image of a first field of view through the taking lens system with the taking lens system set to a first focus distance setting; identifying a portion of the first calibration image having a predetermined degree of focus; using the rangefinder to determine a first calibration distance from the imaging device to the identified portion. A focus correlation is determined based upon the first calibration distance and the first focus distance setting.
Abstract:
A dual resolution printer for printing images on an associated print medium includes: a light source providing a light beam and a focusing lens focusing the light beam and creating a converging light beam having at least one beam waist of at least one wavelength at a first beam waist location. The printer also includes an optical unit movable in and out of the converging light beam and having a corresponding first and second position, respectively. This optical unit, in the second position, reimages the beam waist of the converging light beam created by the focusing lens to a different size second beam waist, at a location substantially the same as the first beam waist location.
Abstract:
A rear attachment is provided to permit objective lens systems designated for a certain image format to be used for imaging on a smaller image format. Thus, a 35 mm single lens reflex camera lens can be used to create an image on a smaller format CCD array.
Abstract:
A reverse telephoto lens includes a front negative group of lens components having a front component with greater than normal separation from a rear positive group of lens elements. Preferably, the front negative group also includes a rear positive component that is meniscus concave to the front.
Abstract:
A reverse Galilean finder in which a front frame, preferably associated with a front element is projected away from the eye by the finder optics without separate frame projection optics to a position such that the distance between the apparent position of the frame to the eye and the rear vertex of the finder divided by the length of the finder is at least 2.2.