Thermography process for converting signal to temperature in a thermal imaging system

    公开(公告)号:US10605668B2

    公开(公告)日:2020-03-31

    申请号:US15843667

    申请日:2017-12-15

    Abstract: A thermography process for thermal imaging systems produced in quantity, including an imaging sensor and an ambient temperature sensor, that includes operations at three different places in the manufacture and actual use of the system. A temperature calibration may be performed on all units of a given design at a small number of controlled scene temperatures at one ambient temperature to produce a function that relates sensor signal to scene temperature. The function is determined for each individual unit and may be unique for each unit. Selected calibrated units may be subjected to a qualification test where they are exposed to larger number of controlled scene temperatures at a plurality of controlled ambient temperatures and the errors between the calibration derived function and the observed results and/or the actual scene temperatures at the various scene/ambient temperature combinations may be derived and put into a table that is loaded into all production units. In actual use of the imaging system, for any given actual observed signal and temperature sensor values, the corresponding scene temperature and/or error may be derived from the table and used to modify the temperature value from the calibration function.

    Cost effective, mass producible system for rapid detection of fever conditions based on thermal imaging

    公开(公告)号:US11625828B2

    公开(公告)日:2023-04-11

    申请号:US17202976

    申请日:2021-03-16

    Abstract: Systems and methods based on thermal imaging for rapid detection of fever conditions in humans that provide for extremely inexpensive, mass producible, field deployable devices accurate in specific, relatively low temperature ranges, and in particular temperatures near nominal human body temperature. The system may include a thermal imager tailored for the application and a corresponding mass producible controlled temperature calibration source configured to provide real time calibration near the human body temperature of interest. The imager and source are deployed in a way such that target people and the calibration source will be within the imager FOV for fever detection. The combination of real time near measurement temperature calibration, with suitable thermography approaches, yield fast, accurate measurements in the fever range using low cost, easy-to-produce components. In combination with a visible imager and pattern/facial recognition techniques, detection of a human target's facial regions of interest suitable for fever detection can be accurately accomplished.

    COST EFFECTIVE, MASS PRODUCIBLE SYSTEM FOR RAPID DETECTION OF FEVER CONDITIONS BASED ON THERMAL IMAGING

    公开(公告)号:US20210295517A1

    公开(公告)日:2021-09-23

    申请号:US17202976

    申请日:2021-03-16

    Abstract: Systems and methods based on thermal imaging for rapid detection of fever conditions in humans that provide for extremely inexpensive, mass producible, field deployable devices accurate in specific, relatively low temperature ranges, and in particular temperatures near nominal human body temperature. The system may include a thermal imager tailored for the application and a corresponding mass producible controlled temperature calibration source configured to provide real time calibration near the human body temperature of interest. The imager and source are deployed in a way such that target people and the calibration source will be within the imager FOV for fever detection. The combination of real time near measurement temperature calibration, with suitable thermography approaches, yield fast, accurate measurements in the fever range using low cost, easy-to-produce components. In combination with a visible imager and pattern/facial recognition techniques, detection of a human target's facial regions of interest suitable for fever detection can be accurately accomplished.

    COST EFFECTIVE, MASS PRODUCIBLE SYSTEM FOR RAPID DETECTION OF FEVER CONDITIONS BASED ON THERMAL IMAGING

    公开(公告)号:US20230084786A1

    公开(公告)日:2023-03-16

    申请号:US18057144

    申请日:2022-11-18

    Abstract: Systems and methods based on thermal imaging for rapid detection of fever conditions in humans that provide for extremely inexpensive, mass producible, field deployable devices accurate in specific, relatively low temperature ranges, and in particular temperatures near nominal human body temperature. The system may include a thermal imager tailored for the application and a corresponding mass producible controlled temperature calibration source configured to provide real time calibration near the human body temperature of interest. The imager and source are deployed in a way such that target people and the calibration source will be within the imager FOV for fever detection. The combination of real time near measurement temperature calibration, with suitable thermography approaches, yield fast, accurate measurements in the fever range using low cost, easy-to-produce components. In combination with a visible imager and pattern/facial recognition techniques, detection of a human target's facial regions of interest suitable for fever detection can be accurately accomplished.

    Cost effective, mass producible system for rapid detection of fever conditions based on thermal imaging

    公开(公告)号:US12193788B2

    公开(公告)日:2025-01-14

    申请号:US18057144

    申请日:2022-11-18

    Abstract: Systems and methods based on thermal imaging for rapid detection of fever conditions in humans that provide for extremely inexpensive, mass producible, field deployable devices accurate in specific, relatively low temperature ranges, and in particular temperatures near nominal human body temperature. The system may include a thermal imager tailored for the application and a corresponding mass producible controlled temperature calibration source configured to provide real time calibration near the human body temperature of interest. The imager and source are deployed in a way such that target people and the calibration source will be within the imager FOV for fever detection. The combination of real time near measurement temperature calibration, with suitable thermography approaches, yield fast, accurate measurements in the fever range using low cost, easy-to-produce components. In combination with a visible imager and pattern/facial recognition techniques, detection of a human target's facial regions of interest suitable for fever detection can be accurately accomplished.

    Thermography process for converting signal to temperature in a thermal imaging system

    公开(公告)号:US10890490B2

    公开(公告)日:2021-01-12

    申请号:US16809387

    申请日:2020-03-04

    Abstract: A thermography process for thermal imaging systems produced in quantity, including an imaging sensor and an ambient temperature sensor, that includes operations at three different places in the manufacture and actual use of the system. A temperature calibration may be performed on all units of a given design at a small number of controlled scene temperatures at one ambient temperature to produce a function that relates sensor signal to scene temperature. The function is determined for each individual unit and may be unique for each unit. Selected calibrated units may be subjected to a qualification test where they are exposed to larger number of controlled scene temperatures at a plurality of controlled ambient temperatures and the errors between the calibration derived function and the observed results and/or the actual scene temperatures at the various scene/ambient temperature combinations may be derived and put into a table that is loaded into all production units. In actual use of the imaging system, for any given actual observed signal and temperature sensor values, the corresponding scene temperature and/or error may be derived from the table and used to modify the temperature value from the calibration function.

Patent Agency Ranking