摘要:
A high-carbon steel wire rod of high ductility for steel cord and the like is provided that experiences little breakage during drawing. The high-carbon steel wire rod of high ductility is a high-carbon steel wire rod fabricated by hot rolling that that has a carbon content of 0.7 mass % or greater, wherein 95% or greater of the wire rod metallographic structure is pearlite structure and the maximum pearlite block size of pearlite at the core of the hot-rolled wire rod is 65 μm or less. The high-carbon steel wire rod of high ductility has a tensile strength in a range of {248+980×(C mass %)}±40 MPa} and a reduction of area of {72.8−40×(C mass %) %} or greater. The high-carbon steel wire rod of high ductility is characterized in that the average pearlite block size at the core of the hot-rolled wire rod constituted by ferrite grain boundaries of an orientation difference of 9 degrees or greater as measured with an EBSP analyzer is 10 μm or greater and 30 μm or less.
摘要:
Provided is a wire rod contains, in mass %: C: 0.6 to 1.1%; Si: 0.1 to 0.5%; Mn: 0.2 to 0.6%; S: 0.004 to 0.015%; and, Cr: 0.02 to less than 0.05%; with a balance including Fe and inevitable impurities in which P is limited to 0.02% by mass or lower and Al is limited to 0.003% by mass or lower; the wire rod has a pearlite in a surface thereof; and, the wire rod has, in a peripheral portion in a cross section thereof, a {110} crystal plane of ferrite in the pearlite, an accumulation degree of the crystal plane being 1.2 or more.
摘要:
Provided is a wire rod contains, in mass %: C: 0.6 to 1.1%; Si: 0.1 to 0.5%; Mn: 0.2 to 0.6% ; S: 0.004 to 0.015%; and, Cr: 0.02 to less than 0.05%; with a balance including Fe and inevitable impurities in which P is limited to 0.02% by mass or lower and Al is limited to 0.003% by mass or lower; the wire rod has a pearlite in a surface thereof; and, the wire rod has, in a peripheral portion in a cross section thereof, a {110} crystal plane of ferrite in the pearlite, an accumulation degree of the crystal plane being 1.2 or more.
摘要:
A high-carbon steel wire rod of high ductility for steel cord and the like is provided that experiences little breakage during drawing. The high-carbon steel wire rod of high ductility is a high-carbon steel wire rod fabricated by hot rolling that that has a carbon content of 0.7 mass % or greater, wherein 95% or greater of the wire rod metallographic structure is pearlite structure and the maximum pearlite block size of pearlite at the core of the hot-rolled wire rod is 65 μm or less. The high-carbon steel wire rod of high ductility has a tensile strength in a range of {248+980×(C mass %)}±40 MPa} and a reduction of area of {72.8−40×(C mass %) %} or greater. The high-carbon steel wire rod of high ductility is characterized in that the average pearlite block size at the core of the hot-rolled wire rod constituted by ferrite grain boundaries of an orientation difference of 9 degrees or greater as measured with an EBSP analyzer is 10 μm or greater and 30 μm or less.
摘要:
The present invention provides a high strength, high toughness steel wire rod useful for a PC steel wire, galvanized steel strands, spring use steel wire, cables for suspension bridges, etc. By hot rolling, then directly patenting or reaustenitizing, then patenting a high carbon steel wire rod of a specific chemical composition of the steel and chemical composition, size, and numerical density of inclusions, piano wire rod or high carbon steel wire rod having a structure of mainly pearlite, having an average value of the proeutectoid cementite area ratio of 5% or less in a center region of less than 20% of the wire rod diameter from the center of the wire rod, having a micromartensite size of the C section of 100 μm or less, having a tensile strength of the 170 kgf/mm2 class or more, and having a drawing ratio at break of 30% or more is obtained.
摘要:
The present invention provides a high strength, high toughness steel wire rod useful for a PC steel wire, galvanized steel strands, spring use steel wire, cables for suspension bridges, etc. By hot rolling, then directly patenting or reaustenitizing, then patenting a high carbon steel wire rod of a specific chemical composition of the steel and chemical composition, size, and numerical density of inclusions, piano wire rod or high carbon steel wire rod having a structure of mainly pearlite, having an average value of the proeutectoid cementite area ratio of 5% or less in a center region of less than 20% of the wire rod diameter from the center of the wire rod, having a micromartensite size of the C section of 100 μm or less, having a tensile strength of the 170 kgf/mm2 class or more, and having a drawing ratio at break of 30% or more is obtained.
摘要:
The object of the present invention relates to a plated steel material and a method of production the same, having enhanced corrosion resistance and workability required for outdoor and exposed uses such as structures, revetments, fishing nets, fences, etc., and a method to produce the plated steel material having an alloy layer 20 &mgr;m or less in thickness consisting of, in mass, 25% or less of Fe, 30% or less of Al, 5% or less of Mg and the balance consisting of Zn at the interface of a plated layer and a base steel; also relates to a plated steel material and a method of production the same, excellent in corrosion resistance and workability, having, at the interface of a plated layer and a base steel, an alloy layer composed of: an inner alloy layer 5 &mgr;m or less in thickness consisting of, in mass, 15% or more of Fe, 20% or more of Al, 2% or more of Si, 5% or less of Mg and the balance consisting of Zn; and an outer alloy layer 30 &mgr;m or less in thickness consisting of, in mass, 25% or less of Fe, 30% or less of Al, 2% or more of Si, 5% or less of Mg and the balance consisting of Zn.
摘要:
This invention provides high-carbon steel wire rod and wire excellent in drawability and methods of producing the same.The high-carbon steel wire rod or wire is characterized in that it contains, in weight percent, C: 0.90-1.10%, Si: not more than 0.40% and Mn: not more than 0.50%, is limited to P: not more than 0.02%, S: not more than 0.01% and Al: not more than 0.003%, the remainder being Fe and unavoidable impurities, and has a microstructure of, in terms of area ratio, not less than 80% upper bainite texture obtained by two-stepped transformation and an Hv of not more than 450. The high-carbon steel wire rod or wire may additionally contain Cr: 0.10-0.30% as an alloying component.
摘要:
This invention relates to high-carbon steel wire rod and wire excellent in drawability and methods of producing the same.The high carbon steel wire rod or wire excellent in is characterized in that it contains, in weight percent, C: 0.70-1.20%, Si: 0.15-1.00% and Mn: 0.30-0.90%, further contains as alloying components one or both of Al: 0.006-0.100 and Ti: 0.01-0.35%, is limited to P: not more than 0.02% and S: not more than 0.01%, the remainder being Fe and unavoidable impurities, and has a microstructure of, in terms of area ratio, not less than 80% upper bainite texture obtained by two-stepped transformation and an Hv of not more than 450. The high-carbon steel wire rod or wire may additionally contain Cr: 0.10-0.50% as an alloying component.The present invention enables production of high-carbon steel wire rod or wire excellent in ductility, elimination of intermediate heat treatment in the secondary processing step, a large reduction in cost, a shortening of production period, and a reduction of equipment expenses.
摘要:
This invention provides bainite wire rod and wire excellent in drawability and methods of producing the same.The bainite wire rod or wire is characterized in that it contains, in weight percent, C: 0.70-1.20%, Mn: 0.30-0.90% and Si: 0.15-1.00%, further contains as alloying components one or both of Al: 0.006-0.100% and Ti: 0.01-0.35%, if required contains Cr: 0.10-0.50%, and is limited to P: not more than 0.02% and S: not more than 0.01%, the remainder being Fe and unavoidable impurities, and has tensile strength and reduction of area determined by the following equations (1) and (2),TS.ltoreq.85.times.(C)+60 (1)RA.gtoreq.-0.875.times.(TS)+158 (2)whereC: carbon content (wt %),TS: tensile strength (kgf/mm.sup.2), andRA: reduction of area (%).