摘要:
Adaptive volume rendering is provided for medical diagnostic ultrasound. The opacity of B-mode data is set relative to the opacity of Doppler data. The opacities for the different types of data are set as a function of ray depth. For example, the opacity of B-mode data near a tissue border is set to be more opaque than for tissue away from the border, and the opacity for flow data near a flow border is set to be less opaque than for flow away from the border. An image is rendered using a rendering parameter set as a function of ray depth, B-mode information and Doppler information. Other processes for enhancing and/or using rendering may be used.
摘要:
Adaptive volume rendering is provided for medical diagnostic ultrasound. The opacity of B-mode data is set relative to the opacity of Doppler data. The opacities for the different types of data are set as a function of ray depth. For example, the opacity of B-mode data near a tissue border is set to be more opaque than for tissue away from the border, and the opacity for flow data near a flow border is set to be less opaque than for flow away from the border. An image is rendered using a rendering parameter set as a function of ray depth, B-mode information and Doppler information. Other processes for enhancing and/or using rendering may be used.
摘要:
Spatial relationships are conveyed in three-dimensional ultrasound imaging. To transition a volume rendering from one view to another view, the transition is animated, showing rotation. For example, the user examines one diagnostic view, but decides to examine another diagnostic view. Upon selection of the other diagnostic view, the volume rendered image appears to rotate. The rotation from one view to another shows the spatial relationship between the views. The user may then examine the static volume rendering at the desired view with an appreciation of the relationship with the previously examined static view.
摘要:
Spatial relationships are conveyed in three-dimensional ultrasound imaging. To transition a volume rendering from one view to another view, the transition is animated, showing rotation. For example, the user examines one diagnostic view, but decides to examine another diagnostic view. Upon selection of the other diagnostic view, the volume rendered image appears to rotate. The rotation from one view to another shows the spatial relationship between the views. The user may then examine the static volume rendering at the desired view with an appreciation of the relationship with the previously examined static view.
摘要:
Visualization systems for rendering images from a multi-dimensional data set, include an interactive visualization system configured to accept user input to define at least one explicit prioritized feature in an image rendered from a multi-dimensional image data set. The at least one prioritized feature is automatically electronically rendered with high or full quality in different interactively requested rendered images of the image data while other non-prioritized features are rendered at lower quality. The visualization system may optionally include a rendering system configured to render images by electronically assigning a level of detail for different tiles associated with an image, each level of detail having a number of pixel samples to be calculated to thereby accelerate image processing.
摘要:
Visualization systems for rendering images from a multi-dimensional data set, include an interactive visualization system configured to accept user input to define at least one explicit prioritized feature in an image rendered from a multi-dimensional image data set. The at least one prioritized feature is automatically electronically rendered with high or full quality in different interactively requested rendered images of the image data while other non-prioritized features are rendered at lower quality. The visualization system may optionally include a rendering system configured to render images by electronically assigning a level of detail for different tiles associated with an image, each level of detail having a number of pixel samples to be calculated to thereby accelerate image processing.
摘要:
Methods for electronically compressing data from a multidimensional medical data set for long-term storage includes: (a) generating a first medical image from a patient multi-dimensional medical image data set in a short-term storage format; and (b) compressing the patient medical image data set into a long-term storage format using at least one viewing parameter.
摘要:
The present invention relates to a solution for processing source data into target data. The source data is here divided into a number data blocks (B1r0, B2r1, B3r2) B4r3) each block representing an information space having at least two dimensions. The blocks (B1r0, B2r1, B3r2, B4r3) are delimited by a respective set of block edges (b1, b2 b3, b4). The blocks (B1r0, B2r1, B3r2, B4r3) have at least two selectable resolution levels (r0, r1, r2, r3), where the resolution levels may be selected individually based on a level-of-detail scheme, such that different blocks represent information at different resolution levels. Moreover, a block sample boundary (βSB1, βsB2, βsB3, βsB4) around each block (B1r0, B2r1, B3r2, B4r3) is defined by a set of surfaces spanned by at least one sample which in each respective dimension of the information space is positioned a longest distance from a geometric center point of this block. A rim distance (δ4) between the block sample boundary (βSB) and the block edge (b4) is relatively short for a comparatively high resolution level (r3), and the rim distance (δ1) is relatively long for a comparatively low resolution level (r0). In connection with the production of the target data (DT) at least one interpolation parameter (ρS1, e(Ps1)) is determined for at least one interpolated sample between a first block (B2) neighboring a second block (B3) at least based on a first rim distance (δ2) of the first block (B2) and a second rim distance (δ3) of the second block (B3).
摘要:
An irregular ultrasound sampling grid is reconstructed to a three-dimensional grid for imaging. Volume data acquired with a helix transducer includes a fractional offset of data spaced along one dimension, resulting in the irregular ultrasound sampling grid. To determine a voxel value for a grid point on a uniform grid, two adjacent planes are identified. The sample locations in the two planes are not aligned, being on the irregular ultrasound sampling grid. Hardware acceleration devices, such as a graphics processing unit, perform bilinear interpolation in each of the planes. The data of each plane is interpolated to the proper global azimuth-range coordinate corresponding with the grid point. The bilinearly interpolated values from each plane are then linearly interpolated to the grid point.
摘要:
Methods for electronically compressing data from a multidimensional medical data set for long-term storage includes: (a) generating a first medical image from a patient multi-dimensional medical image data set in a short-term storage format; and (b) compressing the patient medical image data set into a long-term storage format using at least one viewing parameter.