摘要:
A method for producing a steel ingot, which comprises an Mg oxide forming step of preparing a molten steel containing Mg in an amount sufficient for the molten steel to have an oxide composition having MgO as a primary component and a dissociation step of keeping the pressure of the atmosphere around the molten steel to be lower than that in the Mg oxide forming step, to thereby dissociate MgO to Mg and oxygen and reduce the content of Mg in the steel to 50% or less of that in the Mg oxide forming step through the diffusion thereof into a gas phase. A preferred method further involves a solidifying step.
摘要:
Disclosed is a method of producing maraging steel, which includes producing a consumable electrode for vacuum remelting; and subjecting the consumable electrode to the vacuum remelting. The consumable electrode contains not less 5 ppm Mg. Disclosed is also a maraging steel containing, by mass %, at least, from more than zero to less than 10 ppm Mg, less than 10 ppm oxygen, and less than 15 ppm nitrogen. The steel contains also nitride inclusions having a maximum length of not more than 15 μm and oxide inclusions having a maximum length of not more than 20 μm. Regarding the oxide inclusions, a content rate of spinel form inclusions having a length of not less than 10 μm to a total content of the spinel form inclusions having a length of not less than 10 μm and alumina inclusions having a length of not less than 10 μm exceeds 0.33 (i.e. 33%).
摘要:
A method for producing a steel ingot, which comprises an Mg oxide forming step of preparing a molten steel containing Mg in an amount sufficient for the molten steel to have an oxide composition having MgO as a primary component and a dissociation step of keeping the pressure of the atmosphere around the molten steel to be lower than that in said Mg oxide forming step, to thereby dissociate MgO to Mg and oxygen and reduce the content of Mg in the steel to 50% or less of that in the Mg oxide forming step through the diffusion thereof into a gas phase; and a preferred method further comprising a solidifying step, which comprises an Mg oxide forming step of preparing a first molten steel containing Mg in an amount sufficient for the molten steel to have an oxide composition having MgO as a primary component, a step of solidifying the molten steel, and a dissociation step of melting the resultant solid again under a pressure of an atmosphere lower than that in the case of the first molten steel, to thereby dissociate MgO to Mg and oxygen and reduce the content of Mg in the steel to 50% or less of that in the above solid before re-melting through the diffusion thereof into a gas phase.
摘要:
Provided is a method for fabricating a stepped forged material that can realize a uniform microscopic structure in both the large diameter flange portion and the small diameter shaft portion. This method for fabricating a stepped forged material comprises the following steps: a step for obtaining a primary forged material in which an austenite stainless steel billet is heated to 1000-1080° C., and, without any further heating, the material is forged by means of reciprocal forging into a round rod having along the entire length thereof a forging ratio of 1.5 or greater; a step for obtaining a secondary forged material, that forms the large diameter flange portion and the small diameter shaft portion, in which without reheating, the small diameter shaft portion is formed by means of reciprocal forging at a temperature where the surface temperature of the primary forged material never falls more than 200° C. lower than the abovementioned material heating temperature and the forging is completed before the surface temperature of the final forged portion falls more than 300° C. lower than the abovementioned heating temperature; and a step for performing a solution heat treatment in which the secondary forged material is heated to 1040-1100° C. for 30 minutes or longer.
摘要:
In a hydraulic shovel positional guidance system, an optimal work position calculation unit is configured to calculate an optimal work position of a main vehicle body where a diggable range in which a target surface and an operability range overlap is largest. A display unit is configured to display a guidance picture showing the optimal work position.
摘要:
A calculation unit of a hydraulic shovel display system sets a predetermined display range displayed as a guidance picture for land shape data. The guidance picture shows a cross section of a target surface included in a display range as seen from a side of a main vehicle body, and a current position of the hydraulic shovel. The calculation unit calculates a position of a start point nearest the main vehicle body and a position of an end point set apart from the start point by a maximum reach length of the work machine in the cross section of the target surface as seen from the side based on land shape data, work machine data and a current position of the main vehicle body. The calculation unit calculates a predetermined reference point of the display range based on the positions of the start point and the end point.
摘要:
In a display system in an excavator, a position of an upper boundary line and a position of a lower boundary line are calculated. The upper boundary line indicates a height of a top of a cross section of a display object surface. The lower boundary line indicates a height of a bottom of the cross section of the display object surface. When the current position of the excavator is between the upper boundary line and the lower boundary line, a predetermined reference point of a display range is set to a predetermined position between the upper and lower boundary lines. When the current position of the excavator is above the upper boundary line, the reference point is set above the predetermined position. When the current position of the excavator is below the lower boundary line, the reference point is set below the predetermined position.
摘要:
Provided is a method for fabricating a stepped forged material that can realize a uniform microscopic structure in both the large diameter flange portion and the small diameter shaft portion. This method for fabricating a stepped forged material comprises the following steps: a step for obtaining a primary forged material in which an austenite stainless steel billet is heated to 1000-1080° C., and, without any further heating, the material is forged by means of reciprocal forging into a round rod having along the entire length thereof a forging ratio of 1.5 or greater; a step for obtaining a secondary forged material, that forms the large diameter flange portion and the small diameter shaft portion, in which without reheating, the small diameter shaft portion is formed by means of reciprocal forging at a temperature where the surface temperature of the primary forged material never falls more than 200° C. lower than the abovementioned material heating temperature and the forging is completed before the surface temperature of the final forged portion falls more than 300° C. lower than the abovementioned heating temperature; and a step for performing a solution heat treatment in which the secondary forged material is heated to 1040-1100° C. for 30 minutes or longer.
摘要:
A display system in a hydraulic shovel has a calculation unit and a display unit. The calculation unit is configured to calculate a distance between a design surface and a position closest to the design surface among positions of a blade edge of a bucket in a widthwise direction of the blade edge based on positional information for the blade edge and the design surface. The display unit is configured and arranged to display a guidance picture. The guidance picture includes an image showing the positional relationship between the design surface and the blade edge of the bucket, and information indicating the distance between the design surface and the position closest to the design surface.
摘要:
In a hydraulic shovel positional guidance system, an optimal work position calculation unit is configured to calculate an optimal work position of a main vehicle body where a diggable range in which a target surface and an operability range overlap is largest. A display unit is configured to display a guidance picture showing the optimal work position.