摘要:
Disclosed is a motor driven fluid pump (e.g., water pump) including a pump body having a motor chamber and a pump chamber; a bearing supporting a rotary shaft of a motor which extends from motor chamber to pump chamber in pump body; a mechanical seal disposed between rotary shaft of the motor and pump body and blocking motor chamber from pump chamber; a bearing guide integrally fixed to rotary shaft of the motor between bearing and mechanical seal; a fluidproof plate fixed to pump body to overlap bearing guide, perpendicular to rotary shaft of the motor; and a leachate exhaust aperture and a vapor exhaust aperture which are formed through pump body to communicate with the space between fluidproof plate and mechanical seal.
摘要:
Disclosed is a motor driven fluid pump (e.g., water pump) including a pump body having a motor chamber and a pump chamber; a bearing supporting a rotary shaft of a motor which extends from motor chamber to pump chamber in pump body; a mechanical seal disposed between rotary shaft of the motor and pump body and blocking motor chamber from pump chamber; a bearing guide integrally fixed to rotary shaft of the motor between bearing and mechanical seal; a fluidproof plate fixed to pump body to overlap bearing guide, perpendicular to rotary shaft of the motor; and a leachate exhaust aperture and a vapor exhaust aperture which are formed through pump body to communicate with the space between fluidproof plate and mechanical seal.
摘要:
Example embodiments of the invention may provide for active baluns. An example active balun may include a resonator that may convert a single-ended input signal to at least two differential input signals, and a differential switching block that includes first and second transistors that each receive a respective one of the at least two differential input signals from the resonator, where the first and second transistors may be cross-coupled to each other to provide a first differential output signal and a second differential output signal. An example active balun may further include one or more loads connected to the first and second differential output signals, and one or more stacked inverters that may provide a first output port and a second output port, where the first output port may be responsive to the first differential output signal and the second output port may be responsive to the second differential output signal.
摘要:
An excitation voltage biases an ionic conducting material sample over a nanoscale grid. The bias sweeps a modulated voltage with increasing maximal amplitudes. A current response is measured at grid locations. Current response reversal curves are mapped over maximal amplitudes of the bias cycles. Reversal curves are averaged over the grid for each bias cycle and mapped over maximal bias amplitudes for each bias cycle. Average reversal curve areas are mapped over maximal amplitudes of the bias cycles. Thresholds are determined for onset and ending of electrochemical activity. A predetermined number of bias sweeps may vary in frequency where each sweep has a constant number of cycles and reversal response curves may indicate ionic diffusion kinetics.
摘要:
Example embodiments of the invention may provide for active baluns. An example active balun may include a resonator that may convert a single-ended input signal to at least two differential input signals, and a differential switching block that includes first and second transistors that each receive a respective one of the at least two differential input signals from the resonator, where the first and second transistors may be cross-coupled to each other to provide a first differential output signal and a second differential output signal. An example active balun may further include one or more loads connected to the first and second differential output signals, and one or more stacked inverters that may provide a first output port and a second output port, where the first output port may be responsive to the first differential output signal and the second output port may be responsive to the second differential output signal.
摘要:
An excitation voltage biases an ionic conducting material sample over a nanoscale grid. The bias sweeps a modulated voltage with increasing maximal amplitudes. A current response is measured at grid locations. Current response reversal curves are mapped over maximal amplitudes of the bias cycles. Reversal curves are averaged over the grid for each bias cycle and mapped over maximal bias amplitudes for each bias cycle. Average reversal curve areas are mapped over maximal amplitudes of the bias cycles. Thresholds are determined for onset and ending of electrochemical activity. A predetermined number of bias sweeps may vary in frequency where each sweep has a constant number of cycles and reversal response curves may indicate ionic diffusion kinetics.