Abstract:
A touch display panel comprises a color film substrate, which comprises a conducting layer arranged on a transparent substrate. The conducting layer comprises a plurality of first and second wires, and a color resistance insulating layer lying flat on the conducting layer, where the color resistance insulating layer includes first color resistances with via holes and second color resistances without via holes. The color film substrate also includes a plurality of bridges formed on the color resistance insulating layer, where at least one second color resistance has an extension portion extending in a direction substantially perpendicular to the second color resistances, where the extension portion isolates the conducting layer from the bridges between adjacent second color resistances.
Abstract:
A TFT array substrate, an electronic paper display panel and method for manufacturing the same are disclosed. The electronic paper display panel includes: a first transparent substrate, and an array of storage capacitors located on an inner side of the first transparent substrate. Each of the storage capacitors includes a common electrode located on the first transparent substrate, a transparent capacitor medium layer located on the common electrode, and a pixel electrode (44) located on the transparent capacitor medium layer. The display panel also includes an electronic paper film located on the TFT array substrate, a transparent electrode located on the electronic paper film, and a second transparent substrate located on the transparent electrode. A double-sided display may be realized by the electronic paper display panel.
Abstract:
An embedded capacitive touch display panel is disclosed. The display panel includes a first transparent substrate, and a grid-shaped metal conductive layer formed on the first transparent substrate. The grid-shaped metal conductive layer includes first metal electrodes extending in a first direction, and second metal electrodes extending in a direction intersecting the first direction. Each of the second metal electrodes is divided into multiple sections by openings, through which the first metal electrodes extend. In addition, the first and second metal electrodes are separated from each other by gaps. The display panel also includes a color filter layer, including a plurality of red, green, and blue color resist units, and a green color resist bar. The gaps include a first gap part, parallel to the green color resist bar, where the first gap part is not overlapped by the green color resist bar.
Abstract:
A pixel structure includes a plurality of red sub-pixels, white sub-pixels, blue sub-pixels and green sub-pixels, which are arranged to form a plurality of first sub-pixel cells and second sub-pixel cells. The first and second sub-pixel cells may be arranged to form a plurality of pixel cells. The pixel cells may be arranged in the vertical direction repeatedly to form a plurality of pixel array cells. The pixel array cells may be arranged in the horizontal direction repeatedly to form a plurality of pixel arrays. The pixel structure further includes a supplement pixel array disposed in the pixel arrays according to a preset mode and configured to supplement polarity inversion in the pixel structure. The sub-pixels with a same color in a same row in a same signal frame may not have a same polarity, thereby reducing flicker and horizontal crosstalk of images and improving the image display quality.
Abstract:
The present invention provides a touch panel and a touch display device, the touch panel includes: a transparent substrate; a conductive layer disposed on the transparent substrate, where the conductive layer includes a plurality of first conductive patterns and a plurality of second conductive patterns intersecting with the plurality of first conductive patterns, and each of the second conductive patterns is separated into multiple segments by the plurality of first conductive patterns; a color resistance insulating layer disposed on the conductive layer, where the color resistance insulating layer includes a plurality of through-holes; and a metal bridging layer disposed on the color resistance insulating layer, where the multiple segments of the second conductive pattern are connected together by the metal bridging layer via the through-holes. With the technical solutions of the present invention, the color resistor is used as the insulating layer to replace the existing organic film layer, thus avoiding the undesirable risk brought about by the manufacturing process for coating the organic film, simplifying the manufacturing process and reducing the production costs.
Abstract:
A TFT array substrate is disclosed. The TFT array substrate includes an array of TFT switches including scan lines, data lines intersecting the scan lines, and TFT switches. Each of the TFT switches includes a gate electrode electrically connected to a scan line, a source electrode electrically connected to a data line, and a drain electrode. The TFT array substrate also includes an array of pixel electrodes, each of the pixel electrodes is electrically connected to the drain electrode of a corresponding TFT switch. At least one first pixel electrode is disposed in the array of the pixel electrodes, and each first pixel electrode has an overlapping portion overlapped by at least one of the scan lines and the data lines. In addition, in the overlapping portion, a shielding electrode layer is located between the first pixel electrode and at least one of the scan line and the data line overlapping the first pixel electrode.