Abstract:
A touch display panel comprises a color film substrate, which comprises a conducting layer arranged on a transparent substrate. The conducting layer comprises a plurality of first and second wires, and a color resistance insulating layer lying flat on the conducting layer, where the color resistance insulating layer includes first color resistances with via holes and second color resistances without via holes. The color film substrate also includes a plurality of bridges formed on the color resistance insulating layer, where at least one second color resistance has an extension portion extending in a direction substantially perpendicular to the second color resistances, where the extension portion isolates the conducting layer from the bridges between adjacent second color resistances.
Abstract:
A display panel and a display device are provided. The display panel includes a substrate, multiple data line groups which are arranged on the substrate sequentially and adjacently, and multiple gate line groups which are arranged on the substrate sequentially and adjacently. The display panel further includes multiple pixel electrode array units which are arranged in an array on the substrate. The pixel electrodes in the pixel electrode array unit are electrically connected with the data lines and the gate lines via switch elements. Data driving signals received by any two adjacent pixel electrodes in a same column have opposite polarities. The pixel electrode array unit includes a first pixel electrode, a second pixel electrode, a third pixel electrode, and a fourth pixel electrode. Data driving signals received by any two adjacent pixel electrodes of a same type in the same row have opposite polarities.
Abstract:
A pixel structure includes a plurality of red sub-pixels, white sub-pixels, blue sub-pixels and green sub-pixels, which are arranged to form a plurality of first sub-pixel cells and second sub-pixel cells. The first and second sub-pixel cells may be arranged to form a plurality of pixel cells. The pixel cells may be arranged in the vertical direction repeatedly to form a plurality of pixel array cells. The pixel array cells may be arranged in the horizontal direction repeatedly to form a plurality of pixel arrays. The pixel structure further includes a supplement pixel array disposed in the pixel arrays according to a preset mode and configured to supplement polarity inversion in the pixel structure. The sub-pixels with a same color in a same row in a same signal frame may not have a same polarity, thereby reducing flicker and horizontal crosstalk of images and improving the image display quality.
Abstract:
A TFT array substrate, an electronic paper display panel and method for manufacturing the same are disclosed. The electronic paper display panel includes: a first transparent substrate, and an array of storage capacitors located on an inner side of the first transparent substrate. Each of the storage capacitors includes a common electrode located on the first transparent substrate, a transparent capacitor medium layer located on the common electrode, and a pixel electrode (44) located on the transparent capacitor medium layer. The display panel also includes an electronic paper film located on the TFT array substrate, a transparent electrode located on the electronic paper film, and a second transparent substrate located on the transparent electrode. A double-sided display may be realized by the electronic paper display panel.
Abstract:
The present invention provides a touch panel and a touch display device, the touch panel includes: a transparent substrate; a conductive layer disposed on the transparent substrate, where the conductive layer includes a plurality of first conductive patterns and a plurality of second conductive patterns intersecting with the plurality of first conductive patterns, and each of the second conductive patterns is separated into multiple segments by the plurality of first conductive patterns; a color resistance insulating layer disposed on the conductive layer, where the color resistance insulating layer includes a plurality of through-holes; and a metal bridging layer disposed on the color resistance insulating layer, where the multiple segments of the second conductive pattern are connected together by the metal bridging layer via the through-holes. With the technical solutions of the present invention, the color resistor is used as the insulating layer to replace the existing organic film layer, thus avoiding the undesirable risk brought about by the manufacturing process for coating the organic film, simplifying the manufacturing process and reducing the production costs.
Abstract:
A color filter device for in-cell touch panel is disclosed. The device includes a substrate, a black matrix with a plurality of openings that is formed on the substrate, and a plurality of sensing electrodes and a plurality of driving electrodes both formed on the black matrix. The sensing electrodes are independent of the driving electrodes, the black matrix is disconnected between the sensing electrodes and the driving electrodes, and the disconnected portion of the black matrix is blocked by an opaque material.
Abstract:
The application disclose an embedded capacitive touch display panel and an embedded capacitive touch display device, including: a first transparent substrate and a second substrate arranged opposite to each other, a grid-shaped metal conductive layer formed on the first transparent substrate, and a number of force touch detection electrodes independent of each other formed on the second substrate, wherein the embedded capacitive touch display panel further includes a color filter layer including at least red color resists, green color resists, and blue color resists, wherein the color resists in the same colors are arranged in respective color resist bars, and the color resist bars including green color resist resistance strips; and the grid-shaped metal conductive layer includes periodically arranged force touch fixed potential electrodes and floating electrodes, wherein the force touch fixed potential electrodes are separate from the floating electrodes with gaps being formed between them, and the gaps include first gap sections which are parallel to the color resist bars, and which do not overlap with the green color resist resistance strips. Since the green color resists contribute to display brightness far more than the color resists of the other colors, the first gap sections can be arranged so that they do not overlap with the green color resist resistance strips to thereby alleviate the problem of a visible pattern of the grid-shaped metal conductive layer so as to improve the display performance of the embedded capacitive touch display panel without degrading a touch effect.
Abstract:
The application discloses an embedded capacitive touch display panel and an embedded capacitive touch display device, including: a first transparent substrate, and a grid-shaped metal conductive layer, formed on the first transparent substrate, including a number of touch electrodes separate from each other with gaps being formed between them, wherein the embedded capacitive touch display panel further includes a color filter layer including at least red color resists, green color resists, and blue color resists, wherein the color resists in the same colors are arranged in respective color resist bars, and the color resist bars include green color resist bars; and the gaps include first gap sections which are parallel to the color resist bars, and which do not overlap with the green color resist bars. Since the green color resists contribute to display brightness far more than the color resists of the other colors, the first gap sections can be arranged so that they do not overlap with the green color resist bars to thereby alleviate the problem of a visible pattern of the touch electrodes so as to improve the display performance of the embedded capacitive touch display panel without degrading a touch effect.
Abstract:
A TFT array substrate, an electronic paper display panel and method for manufacturing the same are disclosed. The electronic paper display panel includes: a first transparent substrate, and an array of storage capacitors located on an inner side of the first transparent substrate. Each of the storage capacitors includes a common electrode located on the first transparent substrate, a transparent capacitor medium layer located on the common electrode, and a pixel electrode (44) located on the transparent capacitor medium layer. The display panel also includes an electronic paper film located on the TFT array substrate, a transparent electrode located on the electronic paper film, and a second transparent substrate located on the transparent electrode. A double-sided display may be realized by the electronic paper display panel.
Abstract:
The application disclose an embedded capacitive touch display panel and an embedded capacitive touch display device, including: a first transparent substrate and a second substrate arranged opposite to each other, a grid-shaped metal conductive layer formed on the first transparent substrate, and a number of force touch detection electrodes independent of each other formed on the second substrate, wherein the embedded capacitive touch display panel further includes a color filter layer including at least red color resists, green color resists, and blue color resists, wherein the color resists in the same colors are arranged in respective color resist bars, and the color resist bars including green color resist resistance strips; and the grid-shaped metal conductive layer includes periodically arranged force touch fixed potential electrodes and floating electrodes, wherein the force touch fixed potential electrodes are separate from the floating electrodes with gaps being formed between them, and the gaps include first gap sections which are parallel to the color resist bars, and which do not overlap with the green color resist resistance strips. Since the green color resists contribute to display brightness far more than the color resists of the other colors, the first gap sections can be arranged so that they do not overlap with the green color resist resistance strips to thereby alleviate the problem of a visible pattern of the grid-shaped metal conductive layer so as to improve the display performance of the embedded capacitive touch display panel without degrading a touch effect.