摘要:
Techniques are provided for synchronization of sensor signals between devices. One or more of the devices may collect sensor data. The device may create a sensor signal from the sensor data, which it may make available to other devices upon a publisher/subscriber model. The other devices may subscribe to sensor signals they choose. A device could be a provider or a consumer of the sensor signals. A device may have a layer of code between an operating system and software applications that processes the data for the applications. The processing may include such actions as synchronizing the data in a sensor signal to a local time clock, predicting future values for data in a sensor signal, and providing data samples for a sensor signal at a frequency that an application requests, among other actions.
摘要:
Techniques are provided for synchronization of sensor signals between devices. One or more of the devices may collect sensor data. The device may create a sensor signal from the sensor data, which it may make available to other devices upon a publisher/subscriber model. The other devices may subscribe to sensor signals they choose. A device could be a provider or a consumer of the sensor signals. A device may have a layer of code between an operating system and software applications that processes the data for the applications. The processing may include such actions as synchronizing the data in a sensor signal to a local time clock, predicting future values for data in a sensor signal, and providing data samples for a sensor signal at a frequency that an application requests, among other actions.
摘要:
A system and method are disclosed for recognizing and tracking a user's skeletal joints with a NUI system and further, for recognizing and tracking only some skeletal joints, such as for example a user's upper body. The system may include a limb identification engine which may use various methods to evaluate, identify and track positions of body parts of one or more users in a scene. In examples, further processing efficiency may be achieved by segmenting the field of view in smaller zones, and focusing on one zone at a time. Moreover, each zone may have its own set of predefined gestures which are recognized.
摘要:
Methods for recognizing gestures within a near-field environment are described. In some embodiments, a mobile device, such as a head-mounted display device (HMD), may capture a first image of an environment while illuminating the environment using an IR light source with a first range (e.g., due to the exponential decay of light intensity) and capture a second image of the environment without illumination. The mobile device may generate a difference image based on the first image and the second image in order to eliminate background noise due to other sources of IR light within the environment (e.g., due to sunlight or artificial light sources). In some cases, object and gesture recognition techniques may be applied to the difference image in order to detect the performance of hand and/or finger gestures by an end user of the mobile device within a near-field environment of the mobile device.
摘要:
A method of tracking a target includes receiving from a source a depth image of a scene including the human subject. The depth image includes a depth for each of a plurality of pixels. The method further includes identifying pixels of the depth image that belong to the human subject and deriving from the identified pixels of the depth image one or more machine readable data structures representing the human subject as a body model including a plurality of shapes.
摘要:
A method of tracking a target includes receiving from a source an observed depth image of a scene including the target. Each pixel of the observed depth image is labeled as either a foreground pixel belonging to the target or a background pixel not belonging to the target. Each foreground pixel is labeled with body part information indicating a likelihood that that foreground pixel belongs to one or more body parts of the target. The target is modeled with a skeleton including a plurality of skeletal points, each skeletal point including a three dimensional position derived from body part information of one or more foreground pixels.
摘要:
A method of tracking a target includes receiving an observed depth image of the target from a source and analyzing the observed depth image with a prior-trained collection of known poses to find an exemplar pose that represents an observed pose of the target. The method further includes rasterizing a model of the target into a synthesized depth image having a rasterized pose and adjusting the rasterized pose of the model into a model-fitting pose based, at least in part, on differences between the observed depth image and the synthesized depth image. Either the exemplar pose or the model-fitting pose is then selected to represent the target.
摘要:
The techniques and mechanisms described herein are directed at property management mechanisms that operate within an on-demand property system. The property management mechanisms support the caching of property values on an as needed basis, allow a plurality of object instances to utilize the same property via attached properties, overriding default information associated with a property on a per type basis, obtaining values for a property from an external source, and the like. In addition, the on-demand property system provides validation and control for each property instance. The property management mechanisms minimize the storage requirements and provide flexibility without requiring additional code from the developers.
摘要:
Embodiments are disclosed herein that relate to generating a decision tree through graphical processing unit (GPU) based machine learning. For example, one embodiment provides a method including, for each level of the decision tree: performing, at each GPU of the parallel processing pipeline, a feature test for a feature in a feature set on every example in an example set. The method further includes accumulating results of the feature tests in local memory blocks. The method further includes writing the accumulated results from each local memory block to global memory to generate a histogram of features for every node in the level, and for each node in the level, assigning a feature having a lowest entropy in accordance with the histograms to the node.
摘要:
A method of tracking a target includes receiving from a source a depth image of a scene including the human subject. The depth image includes a depth for each of a plurality of pixels. The method further includes identifying pixels of the depth image that belong to the human subject and deriving from the identified pixels of the depth image one or more machine readable data structures representing the human subject as a body model including a plurality of shapes.