摘要:
A waveguide element 21 including a photonic crystal waveguide including a core 4 that is constituted by a photonic crystal having a refractive index periodicity at least in one direction, and that propagates an electromagnetic wave in a direction in which the photonic crystal does not have the refractive index periodicity. At least one of materials forming the core 4 constituted by the photonic crystal, and at least a portion of a cladding in contact with a side face of the core 4 are constituted by a fluid 6. Thus, it is possible to provide a waveguide element that can be used as a light control element, can be produced easily and also can be applied to an optical sensor.
摘要:
An optical element of the present invention includes a structure having at least one convex portion and at least one concave portion formed so as to be adjacent to either one of the convex portions. At least one surface of the structure is covered, and the optical element has a hollow portion. At least one surface of the structure is covered with a covering layer formed by a deposition process.
摘要:
A method for producing an aspherical structure according to the invention includes the steps of: forming a layer on a surface of a substrate so that the layer exhibits an etching rate distribution in a direction perpendicular to the surface of the substrate; forming a mask having a predetermined opening shape on the surface of the layer; and etching the layer to thereby form at least one aspherical concave portion. When each concave portion is used as a molding tool so that a resin with which the concave portion is filled is solidified and removed from the concave portions an aspherical lens array can be formed accurately.
摘要:
A wavelength separator includes a one-dimensional photonic crystal structure formed by providing a plurality of grooves in parallel with one another at uniform intervals in a homogeneous medium, and has an incident end face formed obliquely with respect to a direction in which the grooves extend, and an output end face formed approximately perpendicular to the incident end face.
摘要:
A waveguide element 21 including a photonic crystal waveguide including a core 4 that is constituted by a photonic crystal having a refractive index periodicity at least in one direction, and that propagates an electromagnetic wave in a direction in which the photonic crystal does not have the refractive index periodicity. At least one of materials forming the core 4 constituted by the photonic crystal, and at least a portion of a cladding in contact with a side face of the core 4 are constituted by a fluid 6. Thus, it is possible to provide a waveguide element that can be used as a light control element, can be produced easily and also can be applied to an optical sensor.
摘要:
An optical waveguide device 1a is configured to include a straight waveguide 2a and bottleneck portions 3a provided in two locations in the longitudinal direction of the waveguide 2a. In the optical waveguide device 1a, light confinement is implemented in all surfaces. This permits provision of an optical waveguide device, wherein a reflector or resonator can be provided in a waveguide using a simple configuration.
摘要:
A photonic crystal waveguide and a homogeneous medium waveguide for enabling a steep bend and arrangement at an arbitrary angle with low propagation loss. A photonic crystal waveguide has a core formed by a photonic crystal having periodicity in the Y-direction. Electromagnetic wave is propagated by a band on the Brillouin zone boundary of the photonic band structure of the core. A side face of the core parallel to the Y-direction is in contact with a homogeneous medium having a refractive index of ns, and the condition of λ0/ns>aλ/(λ2/4+a2)0.5 is satisfied when the wavelength in vacuum of the electromagnetic wave is represented by λ0, the period of the photonic crystal is represented by a, and the period in the XZ-plane direction of the wave propagated through the core is represented by λ.
摘要:
An optical element according to the invention constituted by a multilayer structure having a periodic structural portion as at least one region constituted by repetition of a predetermined period, wherein an end surface of the multilayer structure not parallel to layer surfaces of the multilayer structure is used as a light input surface whereas one or each of opposite surfaces of the multilayer structure parallel to the layer surfaces is used as a light output surface. There is an intermediate layer between a medium and a surface of the multilayer structure, the intermediate layer having a refractive index less than the refractive index of the medium. The periodic structural portion of the multilayer structure can be regarded as a one-dimensional photonic crystal. Refracted light from the one-dimensional photonic crystal has good directivity and the direction of the refracted light has strong dependence on wavelength. When this wavelength dependence property is used, a spectroscopic device or a polarized light separating device of high resolution can be achieved without increase in device size.
摘要:
An optical element of the present invention includes a structure having at least one convex portion and at least one concave portion formed so as to be adjacent to either one of the convex portions. At least one surface of the structure is covered, and the optical element has a hollow portion. At least one surface of the structure is covered with a covering layer formed by a deposition process.
摘要:
A diffraction device using a photonic crystal includes a diffraction grating, which has a period and periodically divides electromagnetic waves, and an input medium and an output medium, which contact the diffraction grating. The input medium is air, and the output medium is a one-dimensional layer having a periodic characteristic in a single direction (Z axis direction). The photonic crystal is formed by a periodic multilayer film having a period corresponding to the sum of the thickness of a first substance and the thickness of a second substance, which are superimposed. The diffraction device drastically decreases the resolution corresponding to the difference of the separated frequencies.