摘要:
The present invention provides a method for preparing a large-sized titanium-silicalite molecular sieve, and a method for preparing cyclohexanone oxime using the large-sized titanium-silicalite molecular sieve. The method for preparing a large-sized titanium-silicalite molecular sieve includes preparing a mixture of a titanium source, a silicon source and a template agent; heating the mixture to form a gel mixture; mixing a colloidal silica with the gel mixture; heating the gel mixture mixed with the colloidal silica in a water bath; and calcining the gel mixture mixed with the colloidal silica. In the present invention, the average particle size of the large-sized titanium-silicalitem molecular sieve is more than 10 um, and the particle size distribution is centralized, so as to avoid the formation of titanium-oxygen-titanium bonding. The method for preparing cyclohexanone oxime using the large-sized titanium-silicalite molecular sieve results in high conversion rate, high selectivity and easy recovery.
摘要:
The present invention provides a method for preparing a titanium-silicalite molecular sieve, and a method for preparing cyclohexanone oxime using the titanium-silicalite molecular sieve. The method for preparing a titanium-silicalite molecular sieve includes the steps of preparing a mixture of a titanium source, a silicon source and a template agent, wherein the titanium source has a structure of formula (I); heating the mixture to form a gel mixture; mixing the gel mixture with water; heating the gel mixture mixed with the water in a water bath; and calcining the gel mixture mixed with the water. The method using the titanium-silicalite molecular sieve for preparing cyclohexanone oxime results in high conversion rate and high selectivity.
摘要:
The present invention provides a method for preparing a titanium-silicalite molecular sieve, and a method for preparing cyclohexanone oxime using the titanium-silicalite molecular sieve. The method for preparing a titanium-silicalite molecular sieve includes the steps of preparing a mixture of a titanium source, a silicon source and a template agent, wherein the titanium source has a structure of formula (I); heating the mixture to form a gel mixture; mixing the gel mixture with water; heating the gel mixture mixed with the water in a water bathe; and calcining the gel mixture mixed with the water. The method using the titanium-silicalite molecular sieve for preparing cyclohexanone oxime results in high conversion rate and high selectivity.
摘要:
The present invention provides a titanium-silicalite molecular sieve and a method for preparing the same. The method includes the steps of preparing a mixture of a titanium source, a silicon source, a transition metal source, a template agent and water; heating the mixture to form a gel mixture; heating the gel mixture in a water bath; and calcining the gel mixture after the gel mixture in the water bath to form the titanium-silicalite molecular sieve. The present invention further provides a method for preparing cyclohexanone oxime by using the titanium-silicalite molecular sieve as the catalyst which results in high conversion rate, high selectivity and high usage efficiency of hydrogen peroxide.
摘要:
The present invention provides a titanium-silicalite molecular sieve and a method for preparing the same. The method includes the steps of preparing a mixture of a titanium source, a silicon source, a metal source selected from IIA to IVA elements and a template agent; heating the mixture to form a gel mixture; heating the gel mixture in a water bath; and calcining the gel mixture after the gel mixture in the water bath to form the titanium-silicalite molecular sieve. The present invention further provides a method for preparing cyclohexanone oxime by using the titanium-silicalite molecular sieve as the catalyst which results in high conversion rate, high selectivity and high usage efficiency of hydrogen peroxide.
摘要:
The present invention provides a titanium-silicalite molecular sieve and a method for preparing the same. The method includes the steps of preparing a mixture of a titanium source, a silicon source, a transition metal source, a template agent and water; heating the mixture to form a gel mixture; heating the gel mixture in a water bath; and calcining the gel mixture after the gel mixture in the water bath to form the titanium-silicalite molecular sieve. The present invention further provides a method for preparing cyclohexanone oxime by using the titanium-silicalite molecular sieve as the catalyst which results in high conversion rate, high selectivity and high usage efficiency of hydrogen peroxide.
摘要:
The present invention provides a titanium-silicalite molecular sieve and a method for preparing the same. The method includes the steps of preparing a mixture of a titanium source, a silicon source, a metal source selected from IIA to IVA elements and a template agent; heating the mixture to form a gel mixture; heating the gel mixture in a water bath; and calcining the gel mixture after the gel mixture in the water bath to form the titanium-silicalite molecular sieve. The present invention further provides a method for preparing cyclohexanone oxime by using the titanium-silicalite molecular sieve as the catalyst which results in high conversion rate, high selectivity and high usage efficiency of hydrogen peroxide.
摘要:
The present invention provides a method for preparing large particles of titanium-silicalite molecular sieves. The method of the present invention includes the steps of preparing a dispersion solution of a primary crystalline molecular sieve; forming an aggregated particle solution by adding a flocculating agent and a coagulating agent into the dispersion solution; mixing the aggregated particle solution with a synthesis gel to form a mixture; and heat-treating the mixture. The average diameter of the titanium-silicalite molecular sieves in the present invention is more than 5 μm. In the preparation of cyclohexanone oxime using the molecular sieve of the present invention as the catalyst, the selectivity and conversion rate of cyclohexanone oxime are high, the usage of hydrogen peroxide is enhanced, and the catalyst is easy to be recovered.
摘要:
The present invention provides a method for preparing large particles of titanium-silicalite molecular sieves. The method of the present invention includes the steps of preparing a dispersion solution of a primary crystalline molecular sieve; forming an aggregated particle solution by adding a flocculating agent and a coagulating agent into the dispersion solution; mixing the aggregated particle solution with a synthesis gel to form a mixture; and heat-treating the mixture. The average diameter of the titanium-silicalite molecular sieves in the present invention is more than 5 μm. In the preparation of cyclohexanone oxime using the molecular sieve of the present invention as the catalyst, the selectivity and conversion rate of cyclohexanone oxime are high, the usage of hydrogen peroxide is enhanced, and the catalyst is easy to be recovered.
摘要:
The present invention provides a method for preparing amides, in which an amino acid ionic liquid is used as both a reaction medium and a catalyst to catalyze Beckman rearrangement of a ketoxime, so as to produce an amide. In the method, the rearrangement is conducted by catalyzing a ketoxime with an amino acid ionic liquid having the asymmetric property at a moderate reaction temperature during a short reaction time, so as to produce an amide without adding other catalysts such as concentrate sulfuric acid. The method has advantages such as avoiding corrosion in equipments with pipelines, the high conversion rate of ketoximes and the high selectivity of amides.