摘要:
A vacuum ultraviolet light emitting device comprising: a luminescence substrate which is composed of a transparent substrate of lithium fluoride, magnesium fluoride, calcium fluoride, barium fluoride or the like, and a metal fluoride thin-film layer formed on the transparent substrate and being a thin-film layer of a metal fluoride such as LuLiF4, LaF3, BaF2 or CaF2, the metal fluoride being doped with atoms of neodymium (Nd), thulium (Tm), erbium (Er) or the like; and an electron beam source such as a thermionic emission gun or a field emission gun, wherein the luminescence substrate and the electron beam source are disposed in a vacuum atmosphere, and the metal fluoride thin-film layer is irradiated with electron beams from the electron beam source to emit light including wavelength components of vacuum ultraviolet light.
摘要:
[Problems to be Solved] It is an object of the present invention to provide a novel radiographic image detector which can detect radiation, such as hard X-rays or γ-rays, with high sensitivity and which is excellent in position resolution and count rate characteristic.[Means to Solve the Problems] A radiographic image detector comprises a combination of a scintillator, such as a lanthanum fluoride crystal containing neodymium, for converting incident radiation into ultraviolet rays; and a gas multiplication ultraviolet image detector for converting ultraviolet rays into electrons, amplifying such electrons by use of a gas electron avalanche phenomenon, and detecting the electrons. The radiographic image detector is characterized in that the gas multiplication ultraviolet image detector is basically constituted by a photoelectric conversion substance, such as cesium iodide or cesium telluride, for converting ultraviolet rays into electrons; a gas electron multiplier for amplifying electrons by use of the gas electron avalanche phenomenon; and a pixel electrode having an amplification function and a detection function.
摘要:
[Problems to be Solved] A fluoride which emits light with high brightness in a vacuum ultraviolet region is provided. Also provided are a novel vacuum ultraviolet light emitting element which comprises the fluoride and which can be suitably used in photolithography, cleaning of a semiconductor or liquid crystal substrate, sterilization, next-generation large-capacity optical disks, medical care (ophthalmologic treatment, DNA cleavage), etc.; and a vacuum ultraviolet light emitting scintillator which is composed of the fluoride and can be suitably used in a small-sized radiation detector incorporating a diamond light receiving element or AlGaN light receiving element with a low background noise as an alternative to a conventional photomultiplier tube.[Means to Solve the Problems] A metal fluoride crystal represented by a chemical formula K3-XNaXTmYZLuY(1-Z)F3+3Y where 0.7
摘要:
[Problems to be Solved] A neutron scintillator excellent in neutron detection efficiency and n/γ discrimination ability, and a neutron detector using the neutron scintillator are provided.[Means to Solve the Problems] A neutron scintillator comprising a eutectic body composed of laminar lithium fluoride crystals and laminar calcium fluoride crystals alternately arranged in layers, the thickness of the lithium fluoride crystal layers in the eutectic body being 0.1 to 5 μm; or a neutron scintillator comprising a eutectic body composed of laminar lithium fluoride crystals and laminar calcium fluoride crystals alternately arranged in layers, the calcium fluoride crystal layers in the eutectic body being linearly continuous in at least one direction; and a neutron detector basically constructed from any of the neutron scintillators and a photodetector.
摘要:
[Problems to be Solved] A neutron scintillator excellent in neutron detection efficiency and n/γ discrimination ability, and a neutron detector using the neutron scintillator are provided.[Means to Solve the Problems] A neutron scintillator comprising a eutectic body composed of laminar lithium fluoride crystals and laminar calcium fluoride crystals alternately arranged in layers, the thickness of the lithium fluoride crystal layers in the eutectic body being 0.1 to 5 μm; or a neutron scintillator comprising a eutectic body composed of laminar lithium fluoride crystals and laminar calcium fluoride crystals alternately arranged in layers, the calcium fluoride crystal layers in the eutectic body being linearly continuous in at least one direction; and a neutron detector basically constructed from any of the neutron scintillators and a photodetector.[Selected Drawing] None
摘要:
[Problems to be Solved]The present invention aims to provide a scintillator which can detect photons of high energy, such as hard X-rays or γ-rays, with high sensitivity.[Means to Solve the Problems]A scintillator comprises lithium lutetium fluoride containing neodymium as a luminescence center, the lithium lutetium fluoride being represented by the chemical formula LiLu1-xNdxF4 where x is in the range of 0.00001 to 0.2, preferably, 0.0001 to 0.05. Preferably, the scintillator comprises a single crystal of the lithium lutetium fluoride containing neodymium.
摘要:
A scintillator for neutron detection, comprising a metal fluoride crystal containing, as constituent elements, a metal having a valence of 2 or higher, such as calcium, aluminum or yttrium; lithium; and fluorine, the metal fluoride crystal containing 1.1 to 20 atoms per unit volume (atoms/nm3) of 6Li, having an effective atomic number of 10 to 40, containing a lanthanoid such as cerium, praseodymium or europium, and being represented by, for instance, LiCaAlF6, LiSrAlF6 and LiYF4. The scintillator for neutron detection has high sensitivity to neutron rays, and is reduced in a background noise attributed to γ rays.
摘要:
To provide a scintillator for neutron detection which has high sensitivity to neutron rays, and is reduced in a background noise attributed to γ rays.[Means to Solve the Problems] A scintillator for neutron detection, comprising a metal fluoride crystal containing, as constituent elements, a metal having a valence of 2 or higher, such as calcium, aluminum or yttrium; lithium; and fluorine, the metal fluoride crystal containing 1.1 to 20 atoms per unit volume (atoms/nm3) of 6Li, having an effective atomic number of 10 to 40, containing a lanthanoid such as cerium, praseodymium or europium, and being represented by LiCaAlF6, LiSrAlF6, LiYF4 etc.
摘要:
[Problems to be Solved] A colquiriite-type crystal preferred for a scintillator for neutron detection, which has high sensitivity to neutron and which is reduced in background noise attributed to γ rays; a scintillator for neutron detection which comprises this crystal; and a neutron detector are provided.[Means to Solve the Problems] A colquiriite-type crystal represented by the chemical formula LiM1M2X6, such as LiCaAlF6, containing Na and Ce, for example, the colquiriite-type crystal containing at least one alkali metal element selected from the group consisting of Na, K, Rb and Cs, and a lanthanoid element selected from the group consisting of Ce, Pr and Nd, and having an isotopic ratio of 6Li of 20 mol % or more, preferably 50 mol % or more; a scintillator for neutron detection comprising the colquiriite-type crystal; and a neutron detector.
摘要:
[Problems to be Solved] To provide a neutron scintillator which shows a large amount of luminescence in response to neutrons and which is excellent in neutron detection efficiency and n/γ discrimination ability; and a metal fluoride crystal suitable for the neutron scintillator.[Means to Solve the Problems] A metal fluoride crystal, as a parent crystal, represented by the chemical formula LiM1M2F6 (where M1 represents at least one alkaline earth metal element selected from the group consisting of Mg, Ca, Sr and Ba, and M2 represents at least one metal element selected from the group consisting of Al, Ga and Sc), such as lithium calcium aluminum fluoride, lithium strontium aluminum fluoride, or lithium magnesium aluminum fluoride, the metal fluoride crystal containing at least one alkali metal element selected from the group consisting of Na, K, Rb and Cs, and also containing Eu; and a light-emitting device comprising the crystal, such as a neutron scintillator.