摘要:
Light emitted by a backlight can be prevented from leaking through a chamfered portion of a front window of a liquid crystal display device.An upper polarizing plate is bonded over the counter substrate, and a front window is bonded over the upper polarizing plate with a UV-curable resin adhesive. The front window is chamfered and a light shielding member is formed on the chamfered portion. The UV adhesive exists between the chamfered portion and the surface of the upper polarizing plate or the counter substrate, and an outer end of the polarizing plate exists at a point outer than an outer end of the front window. Since the light shielding member for the chamfered portion is formed, light from the backlight does not penetrate from the chamfered portion. Thus, light leakage at a periphery of a screen can be prevented even when the view angle is large.
摘要:
In a liquid crystal display device having a front window, light from a backlight is prevented from leaking through chamfered edges of the front window. An upper polarizing plate is formed on an opposing substrate and a light shielding material is formed abutting on an outer edge of the upper polarizing plate. Edges of the upper polarizing plate are located inward of edges of the front window. The upper polarizing plate and the front window are bonded with a boding material including an ultraviolet curable resin. The ultraviolet curable resin also lies over the light shielding material. Chamfers are formed in the front window and the ultraviolet curable resin does not adhere to the chamfers of the front window. By this structure, light from the backlight is prevented from entering the internal part of the front window through the chamfers of the front window and light leakage is prevented.
摘要:
In a liquid crystal display device, there is provided a liquid crystal display panel in which a TFT substrate and a counter substrate are bonded together by a sealing material, with a liquid crystal sandwiched between the substrates. Further, a front window with a black border print formed in the periphery is bonded to the liquid crystal display panel by a UV curable resin. The liquid crystal, is filled by a drop method. The thickness of the TFT substrate and the counter substrate is reduced to about 0.2 mm toy polishing. An inner end of the black border print of the front window is inside an inner end of the sealing material, to prevent the counter substrate of the liquid crystal display panel from being deformed by stress generated In the curing of the UV curable resin, thereby preventing yellow discoloration in the periphery of the display area.
摘要:
Provided is a liquid crystal display device, including: a liquid crystal display panel; a plate-shaped component having a light permeable region, the plate-shaped component being disposed so as to face a display surface of the liquid crystal display panel; a pressure sensitive adhesive layer having light permeability, which is adhered under pressure onto the display surface of the liquid crystal display panel; and an adhesive layer having light permeability, which is adhered onto a surface of the plate-shaped component facing the display surface, in which the plate-shaped component is mounted on the liquid crystal display panel through intermediation of the pressure sensitive adhesive layer and the adhesive layer.
摘要:
Disclosed is a display device in which reliable bonding strength and high reparability are compatible when a panel-like member is bonded to a display panel.The display device comprises: a display panel; and a panel-like member bonded to the display panel with an adhesive made of an ultraviolet curable resin; wherein the adhesive includes a first adhesive portion and a second adhesive portion, the first adhesive portion being provided outside of a display area of the display panel and formed in a circular shape to surround the display area, the second adhesive portion prevailing in an area surrounded by the first adhesive portion, the first adhesive portion being different in a modulus of elasticity from the second adhesive portion, and wherein the modulus of elasticity of the second adhesive portion is smaller than the modulus of elasticity of the first adhesive portion.
摘要:
A liquid crystal display panel including liquid crystal sandwiched between a pair of substrates is prepared. A light-transmitting reinforcing plate is prepared. A photocuring resin is provided between the liquid crystal display panel and the reinforcing plate. Light is irradiated to a side surface of a laminated body constituted of the liquid crystal display panel, the reinforcing plate and the photocuring resin. The photocuring resin is arranged to face the liquid crystal in an opposed manner. The light is allowed to advance to the inside of the photocuring resin from an edge portion of the photocuring resin. The light is allowed to advance to the inside of the reinforcing plate from an edge portion of the reinforcing plate, is propagated in the inside of the reinforcing plate, and is irradiated to the photocuring resin from the reinforcing plate at a position away from the edge portion of the reinforcing plate.
摘要:
Provided is a liquid crystal display device, including: a liquid crystal display panel; a plate-shaped component having a light permeable region, the plate-shaped component being disposed so as to face a display surface of the liquid crystal display panel; a pressure sensitive adhesive layer having light permeability, which is adhered under pressure onto the display surface of the liquid crystal display panel; and an adhesive layer having light permeability, which is adhered onto a surface of the plate-shaped component facing the display surface, in which the plate-shaped component is mounted on the liquid crystal display panel through intermediation of the pressure sensitive adhesive layer and the adhesive layer.
摘要:
The present invention relates to a cleaning method using dry ice pellets that make it possible to efficiently peel off a UV resin. The cleaning method according to the present invention is a method for cleaning a surface of an object to be cleaned that is fixed to a fixture by blowing dry ice pellets against the above-described object using dry air. The dry air has a dew point of −60° C. to −80° C. A nozzle for jetting the dry air and the dry ice pellets against the surface of the object is provided, and the distance between the nozzle and the surface of the object is 5 mm to 70 mm. The shape of the nozzle in a cross-section is circular, elliptical or rectangular.
摘要:
The present disclosure relates to a manufacturing method of a liquid crystal display device. In one aspect, the method may include laminating two or more multipiece boards to each other by way of a sealing material, applying surface polishing to at least one of the multipiece boards using an etchant, and separating the multipiece boards into respective liquid crystal cells by cutting. In further aspects, the sealing material may include individual sealing materials which are formed on regions of the respective liquid crystal cells, an outer peripheral sealing material which surrounds the respective individual sealing materials and forms an opening at least in a portion thereof, and a weir sealing material of a pattern in which the weir sealing material is formed inside the outer peripheral sealing material and in the vicinity of the opening.
摘要:
Electroluminescence elements mounted on a substrate of an OLED display device are sealed by a protective film made of synthetic resin with chemical reaction curing in place of a sealing can. The protective film is formed such that a thickness thereof is equal to or larger than a thickness of the substrate. Alternatively, the protective film is formed by laminating a plurality of resin films which differ in one of the water absorption ratio, the elastic modulus and the hardness. With respect to the protective film which is formed of a plurality of laminated films, compared to the protective film at the electroluminescence element side, the protective film which covers the former protective film has the water absorption ratio, the elastic modulus or the hardness larger than the water absorption ratio, the elastic modulus or the hardness of the former protective film. Due to such a constitution, it is possible to reduce the thickness of the OLED display device without damaging the moisture-proof property of the electroluminescence elements.