摘要:
In a cell comprising an N well and a P well, a distance SP04 from a center line of a contact N-type region to an N well end of the N well is set to be a distance which causes a transistor not to be affected by resist. A distance from a well boundary to the center line of the contact N-type region is equal to SP04. A design on the P well is similar to that on the N well. Thereby, modeling of the transistor in the cell can be performed, taking into consideration an influence from resist in one direction. Also, by fabricating a cell array which satisfies the above-described conditions, design accuracy can be improved.
摘要:
In a cell comprising an N well and a P well, a distance SP04 from a center line of a contact N-type region to an N well end of the N well is set to be a distance which causes a transistor not to be affected by resist. A distance from a well boundary to the center line of the contact N-type region is equal to SP04. A design on the P well is similar to that on the N well. Thereby, modeling of the transistor in the cell can be performed, taking into consideration an influence from resist in one direction. Also, by fabricating a cell array which satisfies the above-described conditions, design accuracy can be improved.
摘要:
A circuit simulation apparatus has a means to acquire data regarding a transistor, a model parameter generation unit for generating a model parameter representing effects of stress upon the transistor active region caused by the isolation region, and a simulation execution unit for evaluating characteristics of the transistor using a simulation program associated with the model parameter. The model parameter includes a term regarding width of the transistor active region, a term regarding width of the peripheral active region, and a term regarding width between the transistor active region and the peripheral active region.
摘要:
A circuit simulation apparatus has a means to acquire data regarding a transistor, a model parameter generation unit for generating a model parameter representing effects of stress upon the transistor active region caused by the isolation region, and a simulation execution unit for evaluating characteristics of the transistor using a simulation program associated with the model parameter. The model parameter includes a term regarding width of the transistor active region, a term regarding width of the peripheral active region, and a term regarding width between the transistor active region and the peripheral active region.
摘要:
By using, as a model expression, an expression showing an inverse proportion between a change rate ΔIdsat/Idsat of saturated current value and a product of a gate protrusion length E1 and a gate width Wg of a transistor and a coefficient, modeling is executed for a transistor property that depends on the gate protrusion length. This provides a circuit simulation that takes into consideration the gate protrusion length of a gate electrode.
摘要:
An integrated circuit includes: a first well of a first conductivity type; a second well of a second conductivity type coming into contact with the first well at a well boundary extending in a gate length direction; a first transistor having a first active region of the second conductivity type provided in the first well; and a second transistor which has a second active region of the second conductivity type provided in the first well and differing from the first active region in length in a gate width direction. The center location of the first active region in the gate width direction is aligned with the center location of the second active region in the gate width direction with reference to the well boundary.
摘要:
A semiconductor device includes a semiconductor substrate; a diffusion region which is formed in the semiconductor substrate and serves as a region for the formation of a MIS transistor; an element isolation region surrounding the diffusion region; at least one gate conductor film which is formed across the diffusion region and the element isolation region, includes a gate electrode part located on the diffusion region and a gate interconnect part located on the element isolation region, and has a constant dimension in the gate length direction; and an interlayer insulating film covering the gate electrode. The semiconductor device further includes a gate contact which passes through the interlayer insulating film, is connected to the gate interconnect part, and has the dimension in the gate length direction larger than the gate interconnect part.
摘要:
In designing a semiconductor integrated circuit, circuit information used for circuit simulation is extracted from measurement values of electric characteristics of a device included in TEG and parameters included in a netlist are modified using the measurement values and simulation values. Circuit simulation is carried out using the thus modified netlist to lead to a decrease in error in the circuit simulation which is caused due to difference between design dimension and actual finished dimension, thereby preventing an increase in design margin and a yield lowering by malfunction.
摘要:
A semiconductor device includes a semiconductor substrate; a diffusion region which is formed in the semiconductor substrate and serves as a region for the formation of a MIS transistor; an element isolation region surrounding the diffusion region; at least one gate conductor film which is formed across the diffusion region and the element isolation region, includes a gate electrode part located on the diffusion region and a gate interconnect part located on the element isolation region, and has a constant dimension in the gate length direction; and an interlayer insulating film covering the gate electrode. The semiconductor device further includes a gate contact which passes through the interlayer insulating film, is connected to the gate interconnect part, and has the dimension in the gate length direction larger than the gate interconnect part.
摘要:
A method for designing a semiconductor integrated circuit includes: a step (a) of setting basic patterns including a plurality of active region/gate patterns each including a gate and an active region and a dummy gate while taking account of patterns of gates on the respective sides of each gate; a step (b) of forming a plurality of basic pattern combinations by combining some of the basic patterns; and a step (c) of forming a standard cell by combining some of the plurality of basic pattern combinations. The plurality of basic pattern combinations include a single transistor (large width), a single transistor (small width), and parallel connected N transistors (large width), for example.