摘要:
An evaporative fuel treatment system is disclosed that includes a canister, a detection passage having a reduced area portion, and switching device that switches fluid communication. Also included is a depressurizing device for depressurizing the detection passage coupled to the detection passage on a side of the reduced area portion opposite to the switching device, and a pressure detecting device. Moreover, the system includes an evaporative fuel state calculating device for calculating an evaporative fuel state in the mixture based on a cutoff pressure, an air pressure, and a mixture pressure of a mixture of air and the evaporative fuel. In one embodiment, the cutoff pressure, the air pressure, and the mixture pressure are detected independently and discontinuously. In another embodiment, the cutoff pressure and the air pressure are detected on a continual basis during purge of the evaporative fuel.
摘要:
An evaporative fuel treatment system is disclosed that includes a canister, a detection passage having a reduced area portion, and switching device that switches fluid communication. Also included is a depressurizing device for depressurizing the detection passage coupled to the detection passage on a side of the reduced area portion opposite to the switching device, and a pressure detecting device. Moreover, the system includes an evaporative fuel state calculating device for calculating an evaporative fuel state in the mixture based on a cutoff pressure, an air pressure, and a mixture pressure of a mixture of air and the evaporative fuel. In one embodiment, the cutoff pressure, the air pressure, and the mixture pressure are detected independently and discontinuously. In another embodiment, the cutoff pressure and the air pressure are detected on a continual basis during purge of the evaporative fuel.
摘要:
A fuel vapor treatment apparatus includes a first canister, a purge passage, an atmosphere passage, a first detection passage provided with a restrictor, and a passage-changing valve for changing the connection passage of the first detection passage between the purge passage and the atmosphere passage. The apparatus further includes a second canister connecting with the first detection passage on the opposite side of the passage-changing valve across the restrictor. A differential pressure sensor detects a pressure difference between both ends of the restrictor. An ECU computes the concentration of fuel vapor on the basis of the detection result of the differential pressure sensor.
摘要:
A fuel vapor treatment apparatus includes a first canister, a purge passage, an atmosphere passage, a first detection passage provided with a restrictor, and a passage-changing valve for changing the connection passage of the first detection passage between the purge passage and the atmosphere passage. The apparatus further includes a second canister connecting with the first detection passage on the opposite side of the passage-changing valve across the restrictor. A differential pressure sensor detects a pressure difference between both ends of the restrictor. An ECU computes the concentration of fuel vapor on the basis of the detection result of the differential pressure sensor.
摘要:
When a gas flow producer is driven, plural kinds of gases flow into a measure-passage at respective timing. An orifice is provided in the measure-passage. The orifice has a diameter-changing portion which restricts a separation of gases from an inner surface of the measure-passage. A pressure sensor is provided in the measure-passage to detect a pressure determined by the orifice and the gas flow producer. A microcomputer calculates a density ratio between the gases based on the detected differential pressure.
摘要:
When a gas flow producer is driven, plural kinds of gases flow into a measure-passage at respective timing. An orifice is provided in the measure-passage. The orifice has a diameter-changing portion which restricts a separation of gases from an inner surface of the measure-passage. A pressure sensor is provided in the measure-passage to detect a pressure determined by the orifice and the gas flow producer. A microcomputer calculates a density ratio between the gases based on the detected differential pressure.
摘要:
A fuel vapor processing apparatus includes a canister, a purge passage, a detection passage including an atmosphere passage and a restrictor, a passage changing valve for changing the connection passage of the detection passage between the purge passage and the atmosphere passage, a pump connecting with the detection passage on the opposite side of the passage changing valve across the restrictor, a pressure sensor for detecting a pressure between the restrictor and the pump, and an ECU for computing the concentration of fuel vapor. When the passage changing valve causes the purge passage to connect with the detection passage and the pump reduces pressure in the detection passage to pass the air-fuel mixture through the restrictor, the pressure sensor detects the pressure during a detection period of time that elapses after the air-fuel mixture passes through the restrictor until the air-fuel mixture reaches the pump.
摘要:
A fuel vapor processing apparatus includes a canister, a purge passage, a detection passage including an atmosphere passage and a restrictor, a passage changing valve for changing the connection passage of the detection passage between the purge passage and the atmosphere passage, a pump connecting with the detection passage on the opposite side of the passage changing valve across the restrictor, a pressure sensor for detecting a pressure between the restrictor and the pump, and an ECU for computing the concentration of fuel vapor. When the passage changing valve causes the purge passage to connect with the detection passage and the pump reduces pressure in the detection passage to pass the air-fuel mixture through the restrictor, the pressure sensor detects the pressure during a detection period of time that elapses after the air-fuel mixture passes through the restrictor until the air-fuel mixture reaches the pump.
摘要:
An ECU computes a transit time from a time when the fuel vapor passes the purge valve right after the purge valve is opened until a time when the fuel vapor reaches a vicinity of the fuel injector. Further more, the ECU computes a fuel vapor concentration at the vicinity of the fuel injector after the transit time has elapsed based on a first-order lag curve which is defined by a maximum variation of the fuel vapor concentration and a time constant. Correcting the fuel injection quantity according to the fuel vapor concentration at the vicinity of the injector restricts a disturbance of air-fuel ratio at a time of starting purge process.
摘要:
A leak detecting apparatus includes a canister adsorbing a fuel vapor evaporated in a fuel tank, a measure passage, a pump connected with the canister through the measure passage, and a pressure senor detecting a pressure in the measure passage. The pump depressurizes the measure passage, the canister, and the fuel tank so that a leakage of the fuel vapor is detected. When a blow-by of the fuel vapor is arisen, the pump is stopped to forcibly terminate a depressurization.