摘要:
Light output from a seed light source generation unit that outputs continuous light having a single frequency or a plurality of frequencies is input by a multi-wavelength light source to an optical circulation unit, and light having a plurality of frequencies that is frequency-synchronized with seed light output from the seed light source generation unit is generated. The optical circulation unit is provided with an optical frequency shifter to shift light frequencies, and includes a circulation circuit to return output from the optical frequency shifter to the input side. On a circulation path, an optical spectral shaper capable of adjusting an optical amount of attenuation for each frequency unit is provided so that optical amount of attenuations are adjusted, and thereby the number and the like of optical frequencies output from the optical circulation unit are changed.
摘要:
Light output from a seed light source generation unit that outputs continuous light having a single frequency or a plurality of frequencies is input by a multi-wavelength light source to an optical circulation unit, and light having a plurality of frequencies that is frequency-synchronized with seed light output from the seed light source generation unit is generated. The optical circulation unit is provided with an optical frequency shifter to shift light frequencies, and includes a circulation circuit to return output from the optical frequency shifter to the input side. On a circulation path, an optical spectral shaper capable of adjusting an optical amount of attenuation for each frequency unit is provided so that optical amount of attenuations are adjusted, and thereby the number and the like of optical frequencies output from the optical circulation unit are changed.
摘要:
A clock signal from a single reference clock is frequency converted, and the frequency-converted signal is input to an equal-interval-optical-frequency-comb generator and a modulator of an optical modulator. By varying the electric frequency of the clock signal input to the equal-interval-optical-frequency-comb generator, frequency intervals of a frequency comb to be generated can be varied, while by selectively employing a particular optical frequency from among the continuous light beams of the generated frequency comb, a frequency comb having unequal intervals can be generated. It is also possible to vary the modulation rate by varying the clock frequency of a driving signal to be input to the optical modulator. By using a clock signal of a single reference clock, the frequency intervals of the frequency comb and the variation of the modulation rate synchronize with each other.
摘要:
A clock signal from a single reference clock is frequency converted, and the frequency-converted signal is input to an equal-interval-optical-frequency-comb generator and a modulator of an optical modulator. By varying the electric frequency of the clock signal input to the equal-interval-optical-frequency-comb generator, frequency intervals of a frequency comb to be generated can be varied, while by selectively employing a particular optical frequency from among the continuous light beams of the generated frequency comb, a frequency comb having unequal intervals can be generated. It is also possible to vary the modulation rate by varying the clock frequency of a driving signal to be input to the optical modulator. By using a clock signal of a single reference clock, the frequency intervals of the frequency comb and the variation of the modulation rate synchronize with each other.
摘要:
A polarization fluctuation compensation device, when WDM light received by, for example, an optical reception device includes a polarization scrambled optical signal and a non-polarization scrambled optical signal, collects information related to whether optical signals having respective wavelengths are polarization scrambled, obtains a target value of control parameters which are different from each other, according to the speed of polarization fluctuations in the non-polarization scrambled optical signal based on the collected information, and performs reception processing of the non-polarization scrambled optical signal by using a control parameter set as the target value. As a result, an influence of fast polarization fluctuations generated resulting from an interaction between optical signals having respective wavelengths can be reliably compensated for, thereby enabling to realize excellent reception characteristics.
摘要:
A polarization fluctuation compensation device, when WDM light received by, for example, an optical reception device includes a polarization scrambled optical signal and a non-polarization scrambled optical signal, collects information related to whether optical signals having respective wavelengths are polarization scrambled, obtains a target value of control parameters which are different from each other, according to the speed of polarization fluctuations in the non-polarization scrambled optical signal based on the collected information, and performs reception processing of the non-polarization scrambled optical signal by using a control parameter set as the target value. As a result, an influence of fast polarization fluctuations generated resulting from an interaction between optical signals having respective wavelengths can be reliably compensated for, thereby enabling to realize excellent reception characteristics.
摘要:
There is provided an optical network system in which optical signals modulated by each of at least two modulation methods are wavelength-division-multiplexed and transferred, including: an optical transmitter configured to transmit first optical signals modulated by each of at least two modulation methods; an add-drop multiplexer configured to drop second optical signals from wavelength-division-multiplexed optical signals transferred in the optical network system, and add the first optical signals to the wavelength-division-multiplexed optical signals; an optical receiver configured to demodulate the second optical signals corresponding to each of at least two modulation methods; and a controller configured to control wavelengths of the first optical signals, the second optical signals and the wavelength-division-multiplexed optical signals so as to rearrange wavelengths of the first optical signals, the second optical signals and the wavelength-division-multiplexed optical signals so that optical signals modulated by a same modulation method are placed on an adjacent wavelength.
摘要:
A communication system includes a transmitter, a receiver device, and a control circuit. The transmitter transmits an optical signal. The receiver device receives the optical signal. The control circuit reduces a power consumption of the receiver device based on an accumulated chromatic dispersion of the received optical signal. The receiver device includes a receiver, an analog/digital converter, and a digital signal processor. The receiver extracts a signal indicating a complex amplitude of the optical signal. The analog/digital converter converts the signal indicating the complex amplitude into a digital signal. The digital signal processor digitally-processes the digital signal.
摘要:
An optical modulation device including waveform shapers that waveform-shape input data signals in synchronism with a rising or falling timing based on comparison with a reference level of an input clock signal, a multi-level phase modulator that generates a multi-level-phase-modulated optical signal based on the data signals waveform-shaped by the plurality of waveform shapers, and outputs the generated optical signal, and a level ratio controller that varies a relative level ratio of the reference level to an amplitude level of the clock signal input to the waveform shapers, based on the optical signal output from the multi-level phase modulator.
摘要:
An optical receiving apparatus branches an optical signal, photo-electric-converts the branched signals, and compensates dispersion in each of the converted electrical signals. Electrical-dispersion compensators respectively compensate the dispersion in the electrical signals using a transversal filter having plural taps. A dispersion control unit controls the dispersion compensation amount for each of the electrical signals by adjusting tap coefficients of the transversal filter. A delay control unit controls the difference in the delay time of the electrical signals by adjusting the tap coefficients adjusted by the dispersion control unit. An identifying circuit identifies data in the optical signal based on each of the electrical signals that have been subjected to dispersion compensation by each of the electrical-dispersion compensators.