摘要:
Multiple inversion recovery flow imaging employs at least four spin inversion pulses following saturation of static nuclei spins to null nuclei in static material having different spin-lattice relaxation times (T.sub.1) with the inversion pulses being spaced in time to substantially reduce the longitudinal magnetization of the T.sub.1 species present. The saturation of static nuclei spins includes applying a sequence of saturation pulses with adjacent pulses being separated by a diphasing gradient to avoid refocusing coherence. The detection of signals includes applying at least one RF read-out pulse near the nulling point.
摘要:
Magnetic resonance signals for imaging species having short spin-spin relaxation times (T.sub.2) are obtained without the need for a refocusing lobe. A series of RF excitation pulses are applied to the species with magnetic resonance signals being detected after each RF excitation pulse is applied. The magnetic resonance signals are then combined to provide the imaging signals. In one embodiment, each RF excitation pulse is half of a conventional slice-selective pulse with each pulse being slewed to zero. Contrast between the imaged short T.sub.2 species and longer T.sub.2 species can be enhanced by first applying an RF signal having sufficient amplitude to excite the longer T.sub.2 species but insufficient amplitude to excite the short T.sub.2 species whereby the longer T.sub.2 species are tipped by the RF signal. A magnetic gradient can then be applied to dephase the tipped nuclei of the longer T.sub.2 species. The imaging signals are then obtained from magnetic resonance signals from the short T.sub.2 species.
摘要:
In imaging a first species having a short T2 magnetic resonance parameter in the presence of a second and third species having longer T2 parameters, a method of suppressing signals from the longer T2 species comprises the steps of: a) applying a RF saturation pulse with multiple suppression bands for the second and third species to excite nuclei spins of the longer T2 species with the magnitude of the RF pulse being sufficiently low so as not to excite nuclei spins of the short T2 species, the RF saturation pulse being sufficiently long to rotate the longer T2 species nuclei spins into a transverse plane, and b) dephasing the longer T2 species nuclei spins in the transverse plane. An imaging pulse sequence is then applied to image the short T2 species. Alternatively, the method can comprise the steps of a) applying a first inversion pulse for selective inverting species of the second longer T2 species, b) obtaining first image signals after step a, c) applying a second inversion pulse for selectively inverting species of the third longer T2 species, d) obtaining second image signals after step c), and e) combining the first image signals and the second image signal to image the first short T2 species with the longer second and third species cancelling in the combination. In each of these methods, either the second or third longer T2 species can be suppressed without suppressing the other by applying the RF saturation or inversion pulse only to the species to be suppressed.
摘要:
Two-dimensional selective adiabatic pulses invert magnetization from a square region in the xy plane with insensitivity to RF variations. Two-dimensional adiabatic pulses can also invert selectively in frequency and in one spatial dimension. The pulses are useful for both MR imaging and spectroscopy.
摘要:
Disclosed is a method of detecting NMR signals indicative of a short T.sub.2 species in the presence of a long T.sub.2 species by utilizing magnetization transfer between species without requiring an auxiliary RF amplifier and with reduced power deposition (SAR). One or more zero degree RF pulses are applied to a body containing the short T.sub.2 species and the long T.sub.2 species with the pulses being at the resonant frequency. The RF pulses provides selective magnetization saturation of the short T.sub.2 species, and the RF pulses are spaced in time to allow magnetization transfer from the short T.sub.2 species to the long T.sub.2 species. Gradients can then be applied to the body for signal localization with signals detected from the long T.sub.2 species due to magnetization transfer from the short T.sub.2 species being indicative of the presence of the short T.sub.2 species. The signals are indicative also of the magnetization transfer between species. The zero degree RF pulses can be zero area binomial pulses or zero degree adiabatic pulsThe U.S. Government has rights in this invention pursuant to National Institute of Health grants HL-34962, HL39478, and HL 39297.
摘要:
A magnetic particle imaging apparatus includes magnets [106,107] that produce a gradient magnetic field having a field free region (FFR), excitation field electromagnets [102,114] that produce a radiofrequency magnetic field within the field free region, high-Q receiving coils [112] that detect a response of magnetic particles in the field free region to the excitation field. Field translation electromagnets create a homogeneous magnetic field displacing the field-free region through the field of view (FOV) allowing the imaging region to be scanned to optimize scan time, scanning power, amplifier heating, SAR, dB/dt, and/or slew rate. Efficient multi-resolution scanning techniques are also provided. Intermodulated low and radio-frequency excitation signals are processed to produce an image of a distribution of the magnetic nanoparticles within the imaging region. A single composite image is computed using deconvolution of multiple signals at different harmonics.
摘要:
A magnetic particle imaging apparatus includes magnets [106,107] that produce a gradient magnetic field having a field free region (FFR), excitation field electromagnets [102,114] that produce a radiofrequency magnetic field within the field free region, high-Q receiving coils [112] that detect a response of magnetic particles in the field free region to the excitation field. Field translation electromagnets create a homogeneous magnetic field displacing the field-free region through the field of view (FOV) allowing the imaging region to be scanned to optimize scan time, scanning power, amplifier heating, SAR, dB/dt, and/or slew rate. Efficient multi-resolution scanning techniques are also provided. Intermodulated low and radio-frequency excitation signals are processed to produce an image of a distribution of the magnetic nanoparticles within the imaging region. A single composite image is computed using deconvolution of multiple signals at different harmonics.
摘要:
Biplanar, symmetrical electromagnets for providing a homogeneous magnetic field. The magnets have coils disposed in two parallel planes. The coils in the two planes are identical. The radii and Ampere-turns of the coils are selected so that a magnetic field between the planes is homogeneous. One preferred embodiment has 6 coils, with 3 coils in each plane. Other embodiments have 8, 10, 12, or more coils. The method of making the coils begins with an equation for the spherical harmonic coefficients describing the fields from a coil as a function of radius, position and Ampere-turns. For a magnet with K coils, the first K-1 even spherical harmonic coefficients are set equal to zero (the odd coefficients are zero due to symmetry of the magnet). This produces a set of equations that, when solved, provides the radii, positions, and Ampere-turns of the K coils. The method can be used to design a biplanar, symmetrical electromagnet with any even number of coils.
摘要:
In magnetic resonance imaging where a subject is placed in a static field and the subject is selectively excited by applying an RF magnetic field in the presence of a gradient magnetic field, the peak RF power of the RF magnetic field is reduced by decreasing the peak amplitude of the RF magnetic field while concurrently reducing the magnitude of the gradient magnetic field. The incremental time duration for the RF magnetic field portion which is reduced in amplitude is proportionately increased. In using an RF pulse having front and back sidelobes with a positive lobe therebetween, the duration of the RF pulse can be reduced by increasing the magnitudes of the sidelobes and concurrently reducing the time periods of the sidelobes. A minimum SAR embodiment can be realized.
摘要:
The present invention provides a radiotherapy treatment apparatus that includes a treatment beam, a magnetic field disposed parallel collinear to the treatment beam, and a target that is disposed along the treatment beam. The treatment beam can be a charged particle beam, a proton beam, an electron beam, or a linear accelerator (Linac) beam. The magnetic field is from a magnetic resonance imager (MRI), a megavolt x-ray imager, or a kilovolt x-ray imager and is disposed to operate in coordination with operation of the treatment beam and to narrow the beam. The tumor is disposed to rotate with respect to the treatment beam and the magnetic field, or the treatment beam and the magnetic field are disposed to rotate up to 360° with respect to the target when mounted to a ring gantry. The apparatus can include a rotation angle dependent shim disposed to account for Earth's magnetic field.