摘要:
A platform cooling structure for a gas turbine moving blade is provided which is capable of improving cooling performance of a platform and of improving reliability of a moving blade in such a manner that a portion in the vicinity of a side edge of the platform which is away from moving blade cooling passageways and is easily influenced by thermal stress caused by high-temperature combustion gas, that is, an upper surface of the side edge is effectively cooled by guiding high-pressure cooling air, flowing to the moving blade cooling passageways, to a discharge opening formed in a surface of the platform in the vicinity of the side edge of the platform without particularly attaching an additional member such as a cover plate to the platform. A moving blade cooling passageway 17c is formed in the inside of the gas turbine moving blade. Cooling communication holes 24a and 24b, of which one ends communicate with the moving blade cooling passageway 17c and the other ends communicate with a plurality of discharge openings 22 provided in the surface of the platform in the vicinity of the side edge of the platform 5, are formed through the inside of the platform.
摘要:
A platform cooling structure for a gas turbine moving blade is provided which is capable of improving cooling performance of a platform and of improving reliability of a moving blade in such a manner that a portion in the vicinity of a side edge of the platform which is away from moving blade cooling passageways and is easily influenced by thermal stress caused by high-temperature combustion gas, that is, an upper surface of the side edge is effectively cooled by guiding high-pressure cooling air, flowing to the moving blade cooling passageways, to a discharge opening formed in a surface of the platform in the vicinity of the side edge of the platform without particularly attaching an additional member such as a cover plate to the platform. A moving blade cooling passageway 17c is formed in the inside of the gas turbine moving blade. Cooling communication holes 24a and 24b, of which one ends communicate with the moving blade cooling passageway 17c and the other ends communicate with a plurality of discharge openings 22 provided in the surface of the platform in the vicinity of the side edge of the platform 5, are formed through the inside of the platform.
摘要:
A gas turbine stationary blade having passages (23, 24) that are provided in the stationary blade (10). A front cylindrical insert (2) is provided in the passage (23) and a rear cylindrical insert (5) is provided in the passage (24), and the inserts are supported at two supporting portions (3a, 3b), (6a, 6b), respectively. A projection (1) is provided at a leading edge portion of the blade so that the leading edge, where the thermal loads are high, is made smaller in size and the number of rows of cooling holes (11a) in the leading edge portion is reduced. Air blowing holes (4b) are provided on the dorsal side rear portion of the front insert (2) and film cooling holes (12) are provided on the dorsal side of the blade, both have diameters that are larger than other air blowing and cooling holes provided in the insert (2) and the blade (10), so that dust in the cooling air is caused to flow out, thereby preventing clogging of the holes. The curved surface of the blade leading edge portion is formed on an elliptical curve, so that the cooling air is caused to flow smoothly. Also, curved surfaces of fillets are formed on an elliptical curve so that thermal stresses concentrated near the fillets are avoided.
摘要:
A gas turbine cooled stationary blade has a blade structure and outer and inner shrouds enhancing cooling efficiency and preventing the occurrence of cracks due to thermal stresses. A blade (1) wall thickness, between 75% and 100% of the blade height of a blade leading edge portion, is made thicker, and the blade (1) wall thickness of other portions is made thinner, as compared with a conventional case. Protruding ribs (4) are provided on a blade (1) convex side inner wall between 0% and 100% of the blade height. A blade (1) trailing edge opening portion is made thinner than the conventional case. Outer shroud (2) is provided with cooling passages (5a, 5b) for air flow in both side end portions. Inner shroud (3) is provided with cooling passages (9a, 9b) for air flow and cooling holes (13a, 13b) for air blow in the side end portions. With the blade (1) structure and the shroud (2, 3) cooling passages (5a, 5b, 9a, 9b) and cooling holes (13a, 13b), the cooling effect is enhanced and cracks are prevented from occurring.
摘要:
A gas turbine provided with an air bleeder tube (1) that, during startup, bleeds a portion of the compressed air of a compressor from the compressor and discharged the bled air into a cylindrical exhaust duct (20), wherein the air bleeder tube (1) is disposed at a portion that does not obstruct the flow of the main flow of combustion gas.
摘要:
The Ni-based single crystal alloy disclosed here is a single crystal and has a chemical composition containing, as % by mass, Co: 8 to 12%, Cr: 5 to 7.5%, Mo: 0.2 to 1.2%, W: 5 to 7%, Al: 5 to 6.5%, Ta: 8 to 12%. Hf: 0.01 to 0.2%, Re: 2 to 4%, Si: 0.005 to 0.1%, with the balance of Ni and inevitable impurities.
摘要:
In a turbine exhaust structure and a gas turbine, a turbine casing (26) formed in an annular shape to constitute a combustion gas passage A is provided. An exhaust diffuser (31) formed in an annular shape to constitute a flue gas passage (B) is connected to the turbine casing (26) to constitute a configuration. By providing a pressure loss body (61) in the exhaust diffuser (31), efficient pressure recovery can be carried out, which improves turbine efficiency, thereby enabling improvement of the performance.
摘要:
A thermal barrier coating material that exhibits superior high-temperature crystal stability to YSZ, as well as a high degree of toughness and an excellent thermal barrier effect. Also provided are a thermal barrier coating, which has a ceramic layer formed using the thermal barrier coating material and exhibits excellent durability to heat cycling, and a turbine member and a gas turbine which are each provided with the thermal barrier coating. The thermal barrier coating material comprises mainly ZrO2 which contains Yb2O3 and Sm2O3 as stabilizers, wherein the amount of the stabilizers is not less than 2 mol % and not more than 7 mol %, and the amount of the Sm2O3 is not less than 0.1 mol % and not more than 2.5 mol %.
摘要:
In the blade structure in a gas turbine, front-edge including angles are made large. As a result, a curve of a relative relationship between incidence angles ic1 and is1 and pressure loss becomes mild. Entrance metal angles are made small. As a result, it becomes possible to make the incidence angles small. Chord length of a tip portion of a moving blade is made large. As a result, it becomes possible to make small the deceleration on a rear surface of the tip portion of the moving blade. Accordingly, it becomes possible to make the pressure loss small, and therefore, it becomes possible to improve the turbine efficiency.
摘要:
The pressure ratio &Dgr;P4S of a final stage moving blade is reduced. As a result, the Mach number in the final stage moving blade can be suppressed, and in the gas turbine operating at a pressure ratio of 20 or more, therefore, decline of turbine efficiency due to shock wave loss can be prevented securely.