摘要:
A thermal barrier coating material that exhibits superior high-temperature crystal stability to YSZ, as well as a high degree of toughness and an excellent thermal barrier effect. Also provided are a thermal barrier coating, which has a ceramic layer formed using the thermal barrier coating material and exhibits excellent durability to heat cycling, and a turbine member and a gas turbine which are each provided with the thermal barrier coating. The thermal barrier coating material comprises mainly ZrO2 which contains Yb2O3 and Sm2O3 as stabilizers, wherein the amount of the stabilizers is not less than 2 mol % and not more than 7 mol %, and the amount of the Sm2O3 is not less than 0.1 mol % and not more than 2.5 mol %.
摘要:
A process for producing a thermal barrier coating having an excellent thermal barrier effect and superior durability to thermal cycling. Also, a turbine member having a thermal barrier coating that has been formed using the production process, and a gas turbine. The process for producing a thermal barrier coating includes: forming a metal bonding layer (12) on a heat-resistant alloy substrate (11), and forming a ceramic layer (13) on the metal bonding layer (12) by thermal spraying of thermal spray particles having a particle size distribution in which the 10% cumulative particle size is not less than 30 μm and not more than 100 μm.
摘要:
A process for producing a thermal barrier coating having an excellent thermal barrier effect and superior durability to thermal cycling. Also, a turbine member having a thermal barrier coating that has been formed using the production process, and a gas turbine. The process for producing a thermal barrier coating includes: forming a metal bonding layer (12) on a heat-resistant alloy substrate (11), and forming a ceramic layer (13) on the metal bonding layer (12) by thermal spraying of thermal spray particles having a particle size distribution in which the 10% cumulative particle size is not less than 30 μm and not more than 100 μm.
摘要:
A method is provided by which physical properties, in particular, the Young's modulus and thermal conductivity of a ceramic layer of a thermal barrier coating formed on a high-temperature member are accurately estimated in a short period of time. A method for estimating a physical property of a ceramic includes a step of calculating the Larson-Miller parameter from the time for which and the temperature at which the ceramic is heated; a step of acquiring the porosity of the ceramic corresponding to the calculated Larson-Miller parameter, based on the calculated Larson-Miller parameter and a diagram correlating the Larson-Miller parameter and the porosity obtained from samples having the same composition as the ceramic; and a step of acquiring the physical property of the ceramic corresponding to the acquired porosity, based on the acquired porosity and a diagram correlating the porosity and the physical property obtained from samples having the same composition as the ceramic.
摘要:
A method by which physical properties, including the Young's modulus and thermal conductivity of a ceramic layer of a thermal barrier coating formed on a high-temperature member, are quickly and accurately estimated. A method for estimating a physical property of a ceramic includes a step of calculating the Larson-Miller parameter from the time for which and the temperature at which the ceramic is heated; a step of acquiring the porosity of the ceramic corresponding to the calculated Larson-Miller parameter, based on the calculated Larson-Miller parameter and a diagram correlating the Larson-Miller parameter and the porosity obtained from samples having the same composition as the ceramic; and a step of acquiring the physical property of the ceramic corresponding to the acquired porosity, based on the acquired porosity and a diagram correlating the porosity and the physical property obtained from samples having the same composition as the ceramic.
摘要:
There are provided a thermal barrier coating material and a thermal barrier coating member that can suppress spalling when used at a high temperature and have a high thermal barrier effect, a method for producing the same, a turbine member coated with a thermal barrier coating, and a gas turbine. The thermal barrier coating member comprises a heat resistant substrate, a bond coat layer formed thereon, and a ceramic layer formed further thereon, wherein the ceramic layer comprises an oxide which consists of an oxide represented by the general formula A2Zr2O7 doped with a predetermined amount of CaO or MgO and has 10 volume % or more of a pyrochlore type crystal structure, where A represents any of La, Nd, Sm, Gd, and Dy.
摘要:
There are provided a thermal barrier coating material and a thermal barrier coating member that can suppress spalling when used at a high temperature and have a high thermal barrier effect, a method for producing the same, a turbine member coated with a thermal barrier coating, and a gas turbine. The thermal barrier coating member comprises a heat resistant substrate, a bond coat layer formed thereon, and a ceramic layer formed further thereon, wherein the ceramic layer comprises an oxide which consists of an oxide represented by the general formula A2Zr2O7 doped with a predetermined amount of CaO or MgO and has 10 volume % or more of a pyrochlore type crystal structure, where A represents any of La, Nd, Sm, Gd, and Dy.
摘要:
A thermal barrier coating material having a lower thermal conductivity than rare earth stabilized zirconia materials. A thermal barrier coating material comprising mainly a compound represented by composition formula (1): Ln1-xTaxO1.5+x wherein 0.13≦x≦0.24, and Ln represents one or more elements selected from the group consisting of Sc, Y and the lanthanoid elements. Also, a thermal barrier coating material comprising mainly a compound represented by composition formula (2): Ln1-xNbxO1.5+x wherein 0.13≦x≦0.24, and Ln represents one or more elements selected from the group consisting of Sc, Y and the lanthanoid elements. Also, a thermal barrier coating material comprising mainly a cubic compound having a fluorite structure represented by composition formula (3): Ln3NbO7 wherein Ln represents one or more elements selected from the group consisting of Sc, Y and the lanthanoid elements.
摘要:
A surface coating film includes, a base material which is a hard material; and an oxidation-resistance coating layer containing, as a main component, a complex oxide of Li and at least Al and covering a surface of the base material. Further, a method of manufacturing a surface coated member, includes, supporting a base material which is a hard material in a hermetic container with the use of a holder arranged in the container; arranging a complex oxide forming target containing Li and at least Al, as main components, in the container; feeding oxygen into the container; and forming an oxidation-resistance coating layer that covers the base material to obtain the surface coated member by effecting electric discharge between the complex oxide forming target as an anode and the holder as a cathode.
摘要:
The present invention provides a surface-coated article possessing a high hardness coating that has a Vickers hardness that is equal to or greater than that of conventional high hardness coatings, and which has an oxidation initiation temperature, which is an expression of resistance to oxidation, that is higher than that of conventional high hardness coatings. A coating layer containing a compound nitride that employs as main components Al and at least one element selected from the group consisting of Zr, Hf, Pd, Ir and the rare earth elements is formed on or over a base material.