摘要:
A hot-dip galvanized steel sheet which is produced from a cold-rolled steel sheet, as a base steel sheet, consisting essentially of C: 0.010-0.06 wt %, Si: no more than 0.5 wt %, Mn: no less than 0.5 wt % and less than 2.0 wt %, P: no more than 0.20 wt %, S: no more than 0.01 wt %, Al: 0.005-0.10 wt %, N: no more than 0.005 wt %, Cr: no more than 1.0 wt %, Mn+1.3Cr: 1.9-2.3 wt %, Fe: remainder, and having a structure composed of ferrite and a second phase containing martensite, said second phase in the structure accounting for no more than 20% in terms of area and martensite in the second phase accounting for no less than 50%, and which has a zinc-plated layer formed on the surface thereof by hot-dip galvanizing or hot-dip galvannealing. A process for production of said hot-dip galvanized steel sheet. This steel sheet has a composite structure containing martensite and yet it has a low strength (no higher than 500 MPa) and also has good strength-ductility balance.
摘要:
A P- and Ti-added galvannealed steel sheet superior in ductility, and a process for production thereof. It is made of a cold-rolled steel sheet and has alloyed hot-dip galvanizing on the surface thereof, said cold-rolled steel sheet having the chemical composition (in terms of wt %) of C: less than 0.010%, Si: no more than 0.5%, Mn: 1.0˜3.0%, P: no more than 0.20%, S: no more than 0.01%, Al: 0.005˜0.10%, N: no more than 0.0050%, Ti/48−(C/12+N/14+S/32): 0.0003˜0.0018 with the remainder being chiefly Fe, and said cold-rolled steel sheet being characterized by &rgr;1≦107 and &rgr;2≦5×105, where &rgr;1 is the number of precipitates whose particle diameter (D) is in the range of 10 nm≦D
摘要翻译:具有优异延性的P型和Ti型合金化热镀锌钢板及其制造方法。 由冷轧钢板制成,其表面具有合金化的热浸镀锌,所述冷轧钢板的化学组成(按重量%计)C:小于0.010%,Si:不 大于0.5%,Mn:1.0〜3.0%,P:不大于0.20%,S:0.01%以下,Al:0.005〜0.10%,N:不大于0.0050%Ti / 48-(C / 12 + N / 14 + S / 32):0.0003〜0.0018,余量主要为Fe,所述冷轧钢板的特征在于rho1 <= 107且rho2 = 5×105,其中rho1是其颗粒 直径(D)在10nm <= D <100nm的范围内,rho2是其粒径(D)在100nm
摘要:
A high-strength cold rolled steel sheet contains:0.10 to 0.28% of C,1.0 to 2.0% of Si,1.0 to 3.0% of Mn, and0.03 to 0.10% of Nb in terms of % by mass,Al is controlled to 0.5 or less, P is controlled to 0.15% or less, and S is controlled to 0.02% or less, and residual austenite accounts for 5 to 20%, bainitic ferrite accounts for 50% or more, and polygonal ferrite accounts for 30% or less (containing 0%), of the entire structure, and a mean number of residual austenite blocks is 20 or more as determined when the random area (15 μm×15 μm) is observed by EBSP (electron back scatter diffraction pattern).
摘要:
To provide a high-strength cold rolled steel sheet that has well-balanced tensile strength and elongation as well as well-balanced tensile strength and stretch-flangeability, and a plated steel sheet manufactured by plating the steel sheet.The high-strength cold rolled steel sheet contains: 0.10 to 0.28% of C, 1.0 to 2.0% of Si, 1.0 to 3.0% of Mn, and 0.03 to 0.10% of Nb in terms of % by mass, wherein the content of Al is controlled to 0.5 or less, the content of P is controlled to 0.15% or less, and the content of S is controlled to 0.02% or less, and wherein residual austenite accounts for 5 to 20%, bainitic ferrite accounts for 50% or more, and polygonal ferrite accounts for 30% or less (containing 0%), of the entire structure, and wherein a mean number of residual austenite blocks is 20 or more as determined when the random area (15 μm×15 μm) is observed by EBSP (electron back scatter diffraction pattern).
摘要:
To provide a high-strength cold rolled steel sheet that has well-balanced tensile strength and elongation as well as well-balanced tensile strength and stretch-flangeability, and a plated steel sheet manufactured by plating the steel sheet. The high-strength cold rolled steel sheet contains: 0.10 to 0.28% of C, 1.0 to 2.0% of Si, 1.0 to 3.0% of Mn, and 0.03 to 0.10% of Nb in terms of % by mass, wherein the content of Al is controlled to 0.5 or less, the content of P is controlled to 0.15% or less, and the content of S is controlled to 0.02% or less, and wherein residual austenite accounts for 5 to 20%, bainitic ferrite accounts for 50% or more, and polygonal ferrite accounts for 30% or less (containing 0%), of the entire structure, and wherein a mean number of residual austenite blocks is 20 or more as determined when the random area (15 μm×15 μμm) is observed by EBSP (electron back scatter diffraction pattern).
摘要:
A dual phase steel sheet with good bake-hardening properties is provided. The steel sheet is characterized in containing (in terms of percent by mass) C: no less than 0.06% and less than 0.25%; Si+Al: 0.5 to 3%; Mn: 0.5 to 3%; P: no more than 0.15%; and S: no more than 0.02%; and also meeting the following condition (in terms of space factor) that retained austenite is at least 3%, bainite is at least 30%, and ferrite is no more than 50%, and further characterized in differing in stress larger than 50 MPa before and after application of 2% pre-strain and ensuing heat treatment for paint baking at 170° C. for 20 minutes. The steel sheet has well-balanced strength and workability, exhibits good bake-hardening properties at the time of paint baking, and offers good resistance to natural aging.
摘要:
A dual phase steel sheet with good bake-hardening properties is provided. The steel sheet is characterized in containing (in terms of percent by mass) C: no less than 0.06% and less than 0.25%; Si+Al: 0.5 to 3%; Mn: 0.5 to 3%; P: no more than 0.15%; and S: no more than 0.02%; and also meeting the following condition (in terms of space factor) that retained austenite is at least 3%, bainite is at least 30%, and ferrite is no more than 50%, and further characterized in differing in stress larger than 50 MPa before and after application of 2% pre-strain and ensuing heat treatment for paint baking at 170° C. for 20 minutes. The steel sheet has well-balanced strength and workability, exhibits good bake-hardening properties at the time of paint baking, and offers good resistance to natural aging.
摘要:
A high-strength forged part is disclosed which comprises a base phase structure, comprising 30% or more of ferrite in terms of a space factor, and a second phase structure, comprising bainite and/or martensite, and retained austenite having an average grain diameter of 5 μm or less and a content represented by 50×[C]
摘要:
A high-strength steel sheet comprises carbon: 0.06 to 0.25 mass %, Si: 0.5 to 3.5 mass % and Mn: 0.7 to 4 mass %. Its mother structure is ferrite, its second phase structure comprises martensite and the residual austenite and the second phase structure measured by image analysis has an area fraction of 25% or less based on the total structure. The steel sheet satisfies the following requirements (1) to (3): (1) the volume fraction (Vtγhd R) of the residual austenite is 5% or more; (2) the ratio (SFγR/VtγR) of the area fraction (SFγR) of the residual austenite within ferrite to VtγR is 0.65 or more; and (3) the ratio [α2/(α1+γR)] of the space factor (α2) of martensite to the second phase structure (α1+γR) is 0.25 to 0.60. The steel sheet has excellent balance between strength and local elongation, and a low yield ratio.
摘要:
A high-strength forged part is disclosed which comprises a base phase structure, comprising 30% or more of ferrite in terms of a space factor, and a second phase structure, comprising bainite and/or martensite, and retained austenite having an average gain diameter of 5 μm or less and a content represented by 50X[C]